cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209873 Decimal expansion of Sum{k=2..infinity} (-1)^k/A165559(k).

Original entry on oeis.org

0, 0, 3, 4, 7, 2, 8, 2, 5, 0, 4, 3, 3, 8, 6, 7, 0, 8, 1, 4, 7, 9, 1, 7, 6, 7, 3, 4, 2, 4, 6, 2, 3, 0, 5, 2, 7, 2, 7, 3, 7, 4, 5, 2, 4, 3, 1, 4, 7, 8, 0, 7, 4, 0, 5, 5, 1, 1, 2, 3, 8, 1, 4, 1, 5, 8, 4, 0, 3, 6, 9, 6, 8, 5, 5, 8, 2, 0, 2, 4, 3, 6, 2, 7, 7, 9
Offset: 0

Views

Author

Paolo P. Lava, Apr 02 2012

Keywords

Comments

Alternating sum of the reciprocals of the partial products of the arithmetic derivatives.

Examples

			0.003472825...
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a, b, f, n, p, pfs;
    a:=0; b:=1;
    for n from 2 by 1 to i do
      f:= A003415(n);
      b:=b*f; a:=a+(-1)^n/b;
    od;
    print(evalf(a, 300));
    end:
    P(1000);
  • Mathematica
    digits = 84; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; p[n_] := p[n] =  Sum[(-1)^k/Product[d[j], {j, 2, k}], {k, 2, n}] // RealDigits[#, 10, digits] & // First; p[digits]; p[n = 2*digits]; While[p[n] != p[n/2], n = 2*n]; Join[{0, 0}, p[n]] (* Jean-François Alcover, Feb 21 2014 *)