A209916 Kolmogorov's button, 2-color generic convex polygon version.
0, 0, 2, 26, 1457, 1889567, 470184984575, 359414999291950792703, 27008149481218253520093899825086463, 12768639440249474099578561928613102801011591209543532543
Offset: 0
Examples
For the classic 4-hole button (where n=4 and c=2) the number of distinct patterns is a(n) = A047656(4)*2^A000332(4) - 1 = 729*2 - 1 = 1457. The "-1" stands for the case where the threads are missing, i.e., where the button is unattached to the cloth.
References
- Masha Gessen, Perfect Rigor, A Genius and the Mathematical Breakthrough of the Century, Houghton Mifflin Harcourt, 2009, page 38.
Programs
-
Magma
[3^((n^2-n) div 2)*2^Binomial(n,4)-1: n in [0..10]]; // Vincenzo Librandi, Dec 29 2015
-
Mathematica
Table[-1+(3^Binomial[n,2])*(2^Binomial[n,4]),{n,0,9}] (* Ivan N. Ianakiev, Dec 29 2015 *)
Comments