cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209927 Decimal expansion of sqrt(3 + sqrt(3 + sqrt(3 + sqrt(3 + ... )))).

Original entry on oeis.org

2, 3, 0, 2, 7, 7, 5, 6, 3, 7, 7, 3, 1, 9, 9, 4, 6, 4, 6, 5, 5, 9, 6, 1, 0, 6, 3, 3, 7, 3, 5, 2, 4, 7, 9, 7, 3, 1, 2, 5, 6, 4, 8, 2, 8, 6, 9, 2, 2, 6, 2, 3, 1, 0, 6, 3, 5, 5, 2, 2, 6, 5, 2, 8, 1, 1, 3, 5, 8, 3, 4, 7, 4, 1, 4, 6, 5, 0, 5, 2, 2, 2, 6, 0, 2, 3, 0, 9, 5, 4, 1, 0, 0, 9, 2, 4, 5, 3, 5, 8, 8, 3, 6, 7, 5, 7
Offset: 1

Views

Author

Alonso del Arte, Mar 17 2012

Keywords

Comments

The number x given by the infinitely nested radical for n = 3 is such that x^2 = x + 3, bearing some similarity to the golden ratio phi with its property that phi^2 = phi + 1. Also, 3/x = x - 1.
The mentioned polynomial x^2 - x - 3 has the present number as positive root, and the negative one is -A223139. - Wolfdieter Lang, Aug 29 2022
It is the spectral radius of the bull-graph (see Seeger and Sossa, 2023). - Stefano Spezia, Sep 19 2023
c^n = A006130(n) + A006130(n-1) * d, where c = (1 + sqrt(13))/2 and d = (-1 + sqrt(13))/2. - Gary W. Adamson, Nov 25 2023
c^n = A052533(n) + A006130(n-1)*c, with A006130(-1) = 0. This is also valid for powers of 1/c = A356033, with A052533 and A006130 given there in terms of S-Chebyshev polynomials (A049310), used for negative indices. - Wolfdieter Lang, Nov 26 2023

Examples

			2.30277563773...
		

Crossrefs

Programs

  • Maple
    Digits:=140:
    evalf((sqrt(13)+1)/2);  # Alois P. Heinz, Sep 19 2023
  • Mathematica
    RealDigits[(1 + Sqrt[13])/2, 10, 130][[1]]
    RealDigits[ Fold[ Sqrt[#1 + #2] &, 0, Table[3, {n, 168}]], 10, 111][[1]] (* Robert G. Wilson v, Oct 02 2018 *)
  • PARI
    (sqrt(13)+1)/2 \\ Altug Alkan, Oct 03 2018

Formula

Closed form: (sqrt(13) + 1)/2 = A098316-1 = A085550+2 = 3*(A188943-1).