cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209931 Numbers k such that smallest digit of all divisors of k is 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 111
Offset: 1

Views

Author

Jaroslav Krizek, Mar 20 2012

Keywords

Comments

Also numbers k such that smallest digit of concatenation of all divisors of k (A037278 or A176558) is 1.
Sequence is not the same as A052382, first deviation is at a(173): A052382(173) = 212, a(173) = 213. [Corrected by Michael S. Branicky, Jul 01 2025.]
Sequence is not the same as A067251, first deviation is at a(91): A067251 (91) = 101, a(91) = 111.
Complement of A209932.

Examples

			Number 24 is in sequence because smallest digit of all divisors of 24 (1, 2, 4, 8, 3, 6, 12, 24) is 1.
		

Crossrefs

Cf. A052382, A067251, A209929 (smallest digit of all divisors of n).

Programs

  • Maple
    isA209931 := proc(n)
        digsdiv := {} ;
        for d in numtheory[divisors](n) do
            dgs := convert(convert(d,base,10),set) ;
            digsdiv := digsdiv union dgs ;
        end do:
        if 0 in digsdiv then
            false;
        else
            true ;
        end if;
    end proc:
    A209931 := proc(n)
        option remember;
        if n =1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA209931(a) then
                    return a;
                end if;
            end do;
        end if;
    end proc:
    seq(A209931(n),n=1..120) ;# R. J. Mathar, Dec 28 2023
  • Mathematica
    Select[Range[100], Min[IntegerDigits[Divisors[#]]] == 1 &] (* Paolo Xausa, Jul 03 2025 *)
  • Python
    from sympy import divisors
    def ok(n): return all('0' not in str(d) for d in divisors(n, generator=True))
    print([k for k in range(1, 112) if ok(k)]) # Michael S. Branicky, Jul 01 2025