A209981 Number of singular 2 X 2 matrices having all elements in {-n,...,n}.
1, 33, 129, 289, 545, 833, 1313, 1729, 2369, 3041, 3905, 4577, 5857, 6657, 7905, 9345, 10881, 11937, 13953, 15137, 17441, 19521, 21537, 22977, 26177, 28257, 30657, 33249, 36577, 38401, 42721, 44673, 48257, 51617, 54785, 58529, 63905
Offset: 0
Keywords
Examples
Among the 33 matrices counted by a(1) are these (in compact notation): (-1,-1,-1,-1), (0,0,0,0), (1,-1,-1,1), (1,1,1,1).
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A210000.
Programs
-
Mathematica
a = -n; b = n; z1 = 40; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] Table[c[n, 0], {n, 0, z1}] (* A209981 *) Table[c[n, 1], {n, 0, z1}] (* A209982 *) %/4 (* A206258 *) 2 % (* A209983 *) Table[c[n, 2], {n, 0, z1}] (* A209984 *) %/4 (* A209985 *) Table[c[n, 3], {n, 0, z1}] (* A209986 *) %/8 (* A209987 *) Table[c[n, 4], {n, 0, z1}] (* A209988 *) %/4 (* A209989 *) Table[c[n, 5], {n, 0, z1}] (* A209990 *) %/8 (* A209997 *)
Formula
a(n) = 8*A134506(n) + (4*n + 1)^2. - Andrew Howroyd, May 04 2020
Comments