Original entry on oeis.org
0, 0, 13, 29, 91, 123, 171, 219, 315, 363, 459, 539, 667, 763, 907, 971, 1163, 1291, 1435, 1579, 1835, 1931, 2171, 2347, 2539, 2699, 2987, 3131, 3515, 3739, 3931, 4171, 4555, 4715, 5099, 5291, 5675, 5963, 6395, 6587, 6971
Offset: 0
A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A209981
Number of singular 2 X 2 matrices having all elements in {-n,...,n}.
Original entry on oeis.org
1, 33, 129, 289, 545, 833, 1313, 1729, 2369, 3041, 3905, 4577, 5857, 6657, 7905, 9345, 10881, 11937, 13953, 15137, 17441, 19521, 21537, 22977, 26177, 28257, 30657, 33249, 36577, 38401, 42721, 44673, 48257, 51617, 54785, 58529, 63905
Offset: 0
Among the 33 matrices counted by a(1) are these (in compact notation):
(-1,-1,-1,-1), (0,0,0,0), (1,-1,-1,1), (1,1,1,1).
-
a = -n; b = n; z1 = 40;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A209981 *)
Table[c[n, 1], {n, 0, z1}] (* A209982 *)
%/4 (* A206258 *)
2 % (* A209983 *)
Table[c[n, 2], {n, 0, z1}] (* A209984 *)
%/4 (* A209985 *)
Table[c[n, 3], {n, 0, z1}] (* A209986 *)
%/8 (* A209987 *)
Table[c[n, 4], {n, 0, z1}] (* A209988 *)
%/4 (* A209989 *)
Table[c[n, 5], {n, 0, z1}] (* A209990 *)
%/8 (* A209997 *)
Showing 1-3 of 3 results.
Comments