A210000 Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
Keywords
Examples
a(2)=6 counts these matrices (using reduced matrix notation): (1,0,0,1), determinant = 1, inverse = (1,0,0,1) (1,0,1,1), determinant = 1, inverse = (1,0,-1,1) (1,1,0,1), determinant = 1, inverse = (1,-1,0,1) (0,1,1,0), determinant = -1, inverse = (0,1,1,0) (0,1,1,1), determinant = -1, inverse = (-1,1,1,0) (1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
Crossrefs
Cf. A171503.
See also the very useful list of cross-references in the Comments section.
Programs
-
Mathematica
a = 0; b = n; z1 = 50; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] Table[c[n, 0], {n, 0, z1}] (* A059306 *) Table[c[n, 1], {n, 0, z1}] (* A171503 *) 2 % (* A210000 *) Table[c[n, 2], {n, 0, z1}] (* A209973 *) %/4 (* A209974 *) Table[c[n, 3], {n, 0, z1}] (* A209975 *) Table[c[n, 4], {n, 0, z1}] (* A209976 *) Table[c[n, 5], {n, 0, z1}] (* A209977 *)
Formula
a(n) = 2*A171503(n).
Extensions
A209982 added to list in comment by Chai Wah Wu, Nov 27 2016
Comments