A210030 Expansion of phi(-q) / phi(q^2) in powers of q where phi() is a Ramanujan theta function.
1, -2, -2, 4, 6, -8, -12, 16, 22, -30, -40, 52, 68, -88, -112, 144, 182, -228, -286, 356, 440, -544, -668, 816, 996, -1210, -1464, 1768, 2128, -2552, -3056, 3648, 4342, -5160, -6116, 7232, 8538, -10056, -11820, 13872, 16248, -18996, -22176, 25844, 30068
Offset: 0
Keywords
Examples
1 - 2*q - 2*q^2 + 4*q^3 + 6*q^4 - 8*q^5 - 12*q^6 + 16*q^7 + 22*q^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, -q]/EllipticTheta[3, 0, q^2], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 17 2017 *)
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) * eta(x^8 + A)^2 / eta(x^4 + A)^5, n))}
Comments