A210064 Total number of 231 patterns in the set of permutations avoiding 123.
0, 0, 1, 11, 81, 500, 2794, 14649, 73489, 356960, 1691790, 7864950, 36000186, 162697176, 727505972, 3223913365, 14176874193, 61926666824, 268931341414, 1161913686618, 4997204887550, 21404922261112, 91351116184716, 388581750349946, 1647982988377786
Offset: 1
Keywords
Examples
a(3) = 1 since there is only one 231 pattern in the set {132,213,231,312,321}.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Cheyne Homberger, Expected patterns in permutation classes, Electronic Journal of Combinatorics, 19(3) (2012), P43.
Crossrefs
Cf. A045720.
Programs
-
Mathematica
Rest[CoefficientList[Series[x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Mar 15 2014 *)
-
PARI
x='x+O('x^50); concat([0,0], Vec(x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x))) \\ G. C. Greubel, May 31 2017
Formula
G.f.: x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x).
a(n) ~ n * 2^(2*n-3) * (1 - 6/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 15 2014
Conjecture: n*(n-3)*a(n) +2*(-4*n^2+11*n-2)*a(n-1) +8*(n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Oct 08 2016
Comments