A210219 Triangle of coefficients of polynomials u(n,x) jointly generated with A210220; see the Formula section.
1, 2, 1, 3, 4, 1, 4, 9, 7, 1, 5, 16, 22, 11, 1, 6, 25, 50, 46, 16, 1, 7, 36, 95, 130, 86, 22, 1, 8, 49, 161, 295, 296, 148, 29, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 10, 81, 372, 1036, 1792, 1897, 1163, 367, 46, 1, 11, 100, 525, 1716, 3612, 4900, 4166, 2083, 541, 56, 1
Offset: 1
Examples
First five rows: 1 2...1 3...4....1 4...9....7....1 5...16...22...11...1 First three polynomials u(n,x): 1, 2 + x, 3 + 4x + x^2.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210219 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210220 *) (* alternative program *) T[n_,k_] := Sum[Binomial[k, 2*j]*Binomial[n-j, k], {j, 0, Floor[k/2]}]; Flatten[Table[T[n, k],{n, 1, 11}, {k, 1, n}]] (* Detlef Meya, Dec 05 2023 *)
-
PARI
T(n,k) = sum(j=0, k\2, binomial(k,2*j)*binomial(n-j,k)) \\ Andrew Howroyd, Jan 01 2024
Formula
u(n,x) = x*u(n-1,x) + v(n-1,x) + 1, v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x) + 1, where u(1,x)=1, v(1,x)=1.
T(n,k) = Sum_{j=0..floor(k/2)} binomial(k,2*j)*binomial(n-j,k). - Detlef Meya, Dec 05 2023
Comments