A210238 Triangle of multiplicities D(n) of multinomial coefficients corresponding to sequence A210237.
1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1, 7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1, 8, 56, 56, 224, 28, 336, 336, 280, 168, 168, 840, 420, 1120, 70, 1120, 560, 168, 420, 56, 1
Offset: 1
Examples
1 2, 1 3, 6, 1 4, 12, 6, 12, 1 5, 20, 20, 30, 30, 20, 1 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1 7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1 Thus for n=3 (third row) the same value of multinomial coefficient follows from the following combinations: 3!/(3!0!0!) 3!/(0!3!0!) 3!/(0!0!3!) (i.e. multiplicity=3) 3!/(2!1!0!) 3!/(2!0!1!) 3!/(0!2!1!) 3!/(0!1!2!) 3!/(1!0!2!) 3!/(1!2!0!) (i.e. multiplicity=6) 3!/(1!1!1!) (i.e. multiplicity=1)
Links
- Sergei Viznyuk, C-program for the sequence.
Programs
-
Mathematica
Table[Last/@Tally[Multinomial@@@Compositions[k,k]],{k,8}] (* Wouter Meeussen, Mar 09 2013 *)
Comments