A210249 Number of partitions of n in which all parts are less than n/2.
1, 0, 0, 1, 1, 3, 4, 8, 10, 18, 23, 37, 47, 71, 90, 131, 164, 230, 288, 393, 488, 653, 807, 1060, 1303, 1686, 2063, 2637, 3210, 4057, 4920, 6158, 7434, 9228, 11098, 13671, 16380, 20040, 23928, 29098, 34624, 41869, 49668, 59755, 70667, 84626, 99795, 118991
Offset: 0
Keywords
Examples
a(7) = 8, because 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1 = 1+1+1+1+1+1+1, exhausting the partitions of the indicated class for n=7.
Links
- David A. Corneth, Table of n, a(n) for n = 0..10000 (first 1001 terms from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; if n=0 then 1 elif i<1 then 0 else b(n, i-1) +`if`(i>n, 0, b(n-i, i)) fi end: a:= n-> b(n, ceil(n/2)-1): seq (a(n), n=0..50); # Alois P. Heinz, Mar 19 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[n, Ceiling[n/2]-1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 09 2016, after Alois P. Heinz *) Table[Count[IntegerPartitions[n],?(Max[#]<n/2&)],{n,0,50}] (* _Harvey P. Dale, Aug 12 2025 *)
Formula
Extensions
More terms from Alois P. Heinz, Mar 19 2012
Comments