A210370 Number of 2 X 2 matrices with all elements in {0,1,...,n} and odd determinant.
0, 6, 16, 96, 168, 486, 720, 1536, 2080, 3750, 4800, 7776, 9576, 14406, 17248, 24576, 28800, 39366, 45360, 60000, 68200, 87846, 98736, 124416, 138528, 171366, 189280, 230496, 252840, 303750, 331200, 393216, 426496, 501126, 541008, 629856, 677160, 781926, 837520
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
Programs
-
Mathematica
a = 0; b = n; z1 = 28; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}] v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}] Table[u[n], {n, 0, z1}] (* A210369 *) Table[v[n], {n, 0, z1}](* A210370 *)
-
PARI
a(n)={2*((n+1)^2-ceil(n/2)^2)*ceil(n/2)^2} \\ Andrew Howroyd, Apr 28 2020
Formula
a(n) + A210369(n) = n^4.
From Colin Barker, Nov 28 2014: (Start)
a(n) = (3 - 3*(-1)^n - 12*(-1+(-1)^n)*n + (22-14*(-1)^n)*n^2 - 4*(-5+(-1)^n)*n^3 + 6*n^4)/16.
G.f.: -2*x*(3*x^5+17*x^4+16*x^3+28*x^2+5*x+3) / ((x-1)^5*(x+1)^4).
(End)
a(n) = 2*((n+1)^2 - ceiling(n/2)^2)*ceiling(n/2)^2. - Andrew Howroyd, Apr 28 2020
Extensions
Terms a(29) and beyond from Andrew Howroyd, Apr 28 2020
Comments