cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210370 Number of 2 X 2 matrices with all elements in {0,1,...,n} and odd determinant.

Original entry on oeis.org

0, 6, 16, 96, 168, 486, 720, 1536, 2080, 3750, 4800, 7776, 9576, 14406, 17248, 24576, 28800, 39366, 45360, 60000, 68200, 87846, 98736, 124416, 138528, 171366, 189280, 230496, 252840, 303750, 331200, 393216, 426496, 501126, 541008, 629856, 677160, 781926, 837520
Offset: 0

Views

Author

Clark Kimberling, Mar 20 2012

Keywords

Comments

a(n) is also the number of 2 X 2 matrices with all elements in {0,1,...n} and odd permanent.

Crossrefs

Programs

  • Mathematica
    a = 0; b = n; z1 = 28;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
    v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
    Table[u[n], {n, 0,  z1}] (* A210369 *)
    Table[v[n], {n, 0, z1}](* A210370 *)
  • PARI
    a(n)={2*((n+1)^2-ceil(n/2)^2)*ceil(n/2)^2} \\ Andrew Howroyd, Apr 28 2020

Formula

a(n) + A210369(n) = n^4.
From Colin Barker, Nov 28 2014: (Start)
a(n) = (3 - 3*(-1)^n - 12*(-1+(-1)^n)*n + (22-14*(-1)^n)*n^2 - 4*(-5+(-1)^n)*n^3 + 6*n^4)/16.
G.f.: -2*x*(3*x^5+17*x^4+16*x^3+28*x^2+5*x+3) / ((x-1)^5*(x+1)^4).
(End)
a(n) = 2*((n+1)^2 - ceiling(n/2)^2)*ceiling(n/2)^2. - Andrew Howroyd, Apr 28 2020

Extensions

Terms a(29) and beyond from Andrew Howroyd, Apr 28 2020