A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A210369
Number of 2 X 2 matrices with all terms in {0,1,...,n} and even determinant.
Original entry on oeis.org
1, 10, 65, 160, 457, 810, 1681, 2560, 4481, 6250, 9841, 12960, 18985, 24010, 33377, 40960, 54721, 65610, 84961, 100000, 126281, 146410, 181105, 207360, 252097, 285610, 342161, 384160, 454441, 506250, 592321, 655360, 759425, 835210, 959617, 1049760
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
-
a = 0; b = n; z1 = 28;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, -n^2, n^2}]
v[n_] := Sum[c[n, 2 k - 1], {k, -n^2, n^2}]
Table[u[n], {n, 0, z1}] (* A210369 *)
Table[v[n], {n, 0, z1}] (* A210370 *)
-
a(n) = {((n+1)^2 - ceil(n/2)^2)^2 + ceil(n/2)^4} \\ Andrew Howroyd, Apr 28 2020
A210373
Number of 2 X 2 matrices with all elements in {0,1,...,n} and positive odd determinant.
Original entry on oeis.org
0, 3, 8, 48, 84, 243, 360, 768, 1040, 1875, 2400, 3888, 4788, 7203, 8624, 12288, 14400, 19683, 22680, 30000, 34100, 43923, 49368, 62208, 69264, 85683, 94640, 115248, 126420, 151875, 165600
Offset: 0
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
-
a = 0; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 0, z1}] (* A210371 *)
Table[v[n], {n, 0, z1}] (* A210372 *)
Table[w[n], {n, 0, z1}] (* A210373 *)
A277044
Number of 2 X 2 matrices with entries in {0,1,...,n} and even determinant with no entry repeated.
Original entry on oeis.org
0, 0, 0, 16, 96, 216, 600, 1008, 2064, 3040, 5280, 7200, 11280, 14616, 21336, 26656, 36960, 44928, 59904, 71280, 92160, 107800, 135960, 156816, 193776, 220896, 268320, 302848, 362544, 405720, 479640, 532800, 623040, 687616, 796416, 873936, 1003680, 1095768, 1248984, 1357360, 1536720, 1663200
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Cf.
A210369 (where the entries can be repeated).
-
F(n,{r=0})={my(s=vector(2),v);forvec(y=vector(4,j,[0,n]),for(k=23*!!r,23,v=numtoperm(4,k);s[1+(y[v[1]]*y[v[4]]-y[v[3]]*y[v[2]])%2]++),2*!r);return(s)} \\ Use r=1 for A210369;
a(n)=F(n,0)[1]; \\ Also works for A210370 if F(n,1)[2] is used instead. - R. J. Cano, Dec 12 2016
-
a(n)=my(e=n\2+1,o=(n+1)\2); 24*binomial(o,4) + 16*binomial(e,2)*binomial(o,2) + 24*o*binomial(e,3) + 24*binomial(e,4) \\ Charles R Greathouse IV, Dec 12 2016
-
def t(n):
s=0
for a in range(0,n+1):
for b in range(0,n+1):
for c in range(0,n+1):
for d in range(0,n+1):
if (a!=b and a!=d and b!=d and c!=a and c!=b and c!=d):
if (a*d-b*c)%2==0:
s+=1
return s
for i in range(0,201):
print(f"{i} {t(i)}")
A279483
Number of 2 X 2 matrices with entries in {0,1,...,n} and odd determinant with no entry repeated.
Original entry on oeis.org
0, 0, 0, 8, 24, 144, 240, 672, 960, 2000, 2640, 4680, 5880, 9408, 11424, 17024, 20160, 28512, 33120, 45000, 51480, 67760, 76560, 98208, 109824, 137904, 152880, 188552, 207480, 252000, 275520, 330240, 359040, 425408, 460224, 539784, 581400, 675792, 725040, 836000, 893760, 1023120, 1090320, 1240008
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Cf.
A210370 (where the entries can be repeated).
-
CoefficientList[Series[8 x^3*(1 + 2 x + 11 x^2 + 4 x^3)/((1 - x)^5*(1 + x)^4), {x, 0, 43}], x] (* Michael De Vlieger, Dec 13 2016 *)
-
F(n, {r=0})={my(s=vector(2), v); forvec(y=vector(4, j, [0, n]), for(k=23*!!r, 23, v=numtoperm(4, k); s[1+(y[v[1]]*y[v[4]]-y[v[3]]*y[v[2]])%2]++), 2*!r); return(s)} \\ a(n)=F(n, 0)[2];
-
concat(vector(3), Vec(8*x^3*(1 + 2*x + 11*x^2 + 4*x^3) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Dec 13 2016
-
def t(n):
s=0
for a in range(0,n+1):
for b in range(0,n+1):
for c in range(0,n+1):
for d in range(0,n+1):
if (a!=b and a!=d and b!=d and c!=a and c!=b and c!=d):
if (a*d-b*c)%2==1:
s+=1
return s
for i in range(0,201):
print(i, t(i))
Showing 1-5 of 5 results.
Comments