A210000
Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.
Original entry on oeis.org
0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0
a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
See also the very useful list of cross-references in the Comments section.
-
a = 0; b = n; z1 = 50;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, 0], {n, 0, z1}] (* A059306 *)
Table[c[n, 1], {n, 0, z1}] (* A171503 *)
2 % (* A210000 *)
Table[c[n, 2], {n, 0, z1}] (* A209973 *)
%/4 (* A209974 *)
Table[c[n, 3], {n, 0, z1}] (* A209975 *)
Table[c[n, 4], {n, 0, z1}] (* A209976 *)
Table[c[n, 5], {n, 0, z1}] (* A209977 *)
A210370
Number of 2 X 2 matrices with all elements in {0,1,...,n} and odd determinant.
Original entry on oeis.org
0, 6, 16, 96, 168, 486, 720, 1536, 2080, 3750, 4800, 7776, 9576, 14406, 17248, 24576, 28800, 39366, 45360, 60000, 68200, 87846, 98736, 124416, 138528, 171366, 189280, 230496, 252840, 303750, 331200, 393216, 426496, 501126, 541008, 629856, 677160, 781926, 837520
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 4, -4, -6, 6, 4, -4, -1, 1).
-
a = 0; b = n; z1 = 28;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 0, z1}] (* A210369 *)
Table[v[n], {n, 0, z1}](* A210370 *)
-
a(n)={2*((n+1)^2-ceil(n/2)^2)*ceil(n/2)^2} \\ Andrew Howroyd, Apr 28 2020
A210371
Number of 2 X 2 matrices with all elements in {0,1,...,n} and nonnegative even determinant.
Original entry on oeis.org
1, 10, 48, 112, 285, 490, 968, 1448, 2465, 3410, 5280, 6904, 10021, 12610, 17400, 21312, 28321, 33866, 43704, 51336, 64661, 74898, 92416, 105680, 128297, 145234, 173712, 194928, 230333, 256410, 299776
Offset: 0
-
a = 0; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 0, z1}] (* A210371 *)
Table[v[n], {n, 0, z1}] (* A210372 *)
Table[w[n], {n, 0, z1}] (* A210373 *)
A210372
Number of 2 X 2 matrices with all elements in {0,1,...,n} and positive even determinant.
Original entry on oeis.org
0, 0, 17, 48, 172, 320, 713, 1112, 2016, 2840, 4561, 6056, 8964, 11400, 15977, 19648, 26400, 31744, 41257, 48664, 61620, 71512, 88689, 101680, 123800, 140376, 168449, 189232, 224108, 249840, 292545
Offset: 0
-
a = 0; b = n; z1 = 30;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := u[n] = Sum[c[n, 2 k], {k, 0, n^2}]
v[n_] := v[n] = Sum[c[n, 2 k], {k, 1, n^2}]
w[n_] := w[n] = Sum[c[n, 2 k - 1], {k, 1, n^2}]
Table[u[n], {n, 0, z1}] (* A210371 *)
Table[v[n], {n, 0, z1}] (* A210372 *)
Table[w[n], {n, 0, z1}] (* A210373 *)
A277044
Number of 2 X 2 matrices with entries in {0,1,...,n} and even determinant with no entry repeated.
Original entry on oeis.org
0, 0, 0, 16, 96, 216, 600, 1008, 2064, 3040, 5280, 7200, 11280, 14616, 21336, 26656, 36960, 44928, 59904, 71280, 92160, 107800, 135960, 156816, 193776, 220896, 268320, 302848, 362544, 405720, 479640, 532800, 623040, 687616, 796416, 873936, 1003680, 1095768, 1248984, 1357360, 1536720, 1663200
Offset: 0
- Indranil Ghosh, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
Cf.
A210369 (where the entries can be repeated).
-
F(n,{r=0})={my(s=vector(2),v);forvec(y=vector(4,j,[0,n]),for(k=23*!!r,23,v=numtoperm(4,k);s[1+(y[v[1]]*y[v[4]]-y[v[3]]*y[v[2]])%2]++),2*!r);return(s)} \\ Use r=1 for A210369;
a(n)=F(n,0)[1]; \\ Also works for A210370 if F(n,1)[2] is used instead. - R. J. Cano, Dec 12 2016
-
a(n)=my(e=n\2+1,o=(n+1)\2); 24*binomial(o,4) + 16*binomial(e,2)*binomial(o,2) + 24*o*binomial(e,3) + 24*binomial(e,4) \\ Charles R Greathouse IV, Dec 12 2016
-
def t(n):
s=0
for a in range(0,n+1):
for b in range(0,n+1):
for c in range(0,n+1):
for d in range(0,n+1):
if (a!=b and a!=d and b!=d and c!=a and c!=b and c!=d):
if (a*d-b*c)%2==0:
s+=1
return s
for i in range(0,201):
print(f"{i} {t(i)}")
Showing 1-5 of 5 results.
Comments