A210378 Number of 2 X 2 matrices with all terms in {0,1,...,n} and even trace.
1, 8, 45, 128, 325, 648, 1225, 2048, 3321, 5000, 7381, 10368, 14365, 19208, 25425, 32768, 41905, 52488, 65341, 80000, 97461, 117128, 140185, 165888, 195625, 228488, 266085, 307328, 354061, 405000, 462241, 524288, 593505, 668168, 750925, 839808, 937765, 1042568
Offset: 0
Examples
Writing the matrices as 4-letter words, the 8 for n=1 are as follows: 0000, 0100, 0010, 0110, 1001, 1101, 1011, 1111
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
Programs
-
Mathematica
a = 0; b = n; z1 = 35; t[n_] := t[n] = Flatten[Table[w + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] u[n_] := Sum[c[n, 2 k], {k, 0, 2*n}] v[n_] := Sum[c[n, 2 k - 1], {k, 1, 2*n - 1}] Table[u[n], {n, 0, z1}] (* A210378 *) Table[v[n], {n, 0, z1}] (* A210379 *)
Formula
a(n) + A210379(n) = (n+1)^4.
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = (n + 1)^2*((2*n + 1 -(-1)^n)^2 + (2*n + 3 + (-1)^n)^2)/16.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8) for n > 7.
G.f.: (-x^6 - 6*x^5 - 27*x^4 - 28*x^3 - 27*x^2 - 6*x - 1)/((x - 1)^5*(x + 1)^3). (End)
From Amiram Eldar, Mar 15 2024: (Start)
a(n) = (n+1)^2*floor(((n+1)^2+1)/2).
Sum_{n>=0} 1/a(n) = Pi^4/720 + (Pi-2*tanh(Pi/2))*Pi/4. (End)
E.g.f.: ((2 + 15*x + 26*x^2 + 10*x^3 + x^4)*cosh(x) + (1 + 18*x + 25*x^2 + 10*x^3 + x^4)*sinh(x))/2. - Stefano Spezia, Jul 15 2024