A210381 Triangle by rows, derived from the beheaded Pascal's triangle, A074909.
1, 0, 2, 0, 1, 3, 0, 1, 3, 4, 0, 1, 4, 6, 5, 0, 1, 5, 10, 10, 6, 0, 1, 6, 15, 20, 15, 7, 0, 1, 7, 21, 35, 35, 21, 8, 0, 1, 8, 28, 56, 70, 56, 28, 9, 0, 1, 9, 36, 84, 126, 126, 84, 36, 10, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11
Offset: 0
Examples
{1}, {0, 2}, {0, 1, 3}, {0, 1, 3, 4}, {0, 1, 4, 6, 5}, {0, 1, 5, 10, 10, 6}, {0, 1, 6, 15, 20, 15, 7}, {0, 1, 7, 21, 35, 35, 21, 8}, {0, 1, 8, 28, 56, 70, 56, 28, 9}, {0, 1, 9, 36, 84, 126, 126, 84, 36, 10}, {0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11} ...
References
- Konrad Knopp, Elements of the Theory of Functions, Dover, 1952,pp 117-118.
Programs
-
Mathematica
t2[n_, m_] = If[m - 1 <= n, Binomial[n, m - 1], 0]; O2 = Table[Table[If[n == m, t2[n, m] + 1, t2[n, m]], {m, 0, n}], {n, 0, 10}]; Flatten[O2]
Formula
Partial differences of the beheaded Pascal's triangle A074909 starting from the top, by columns.
G.f.: (1-x)/(1-x-2*y*x+y*x^2+y^2*x^2). - Philippe Deléham, Mar 25 2012
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,2) = 3 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
Comments