cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210462 Decimal expansion of the real part of the complex roots of x^3-x^2+1.

Original entry on oeis.org

8, 7, 7, 4, 3, 8, 8, 3, 3, 1, 2, 3, 3, 4, 6, 3, 8, 0, 0, 2, 4, 7, 5, 4, 4, 4, 8, 1, 7, 9, 2, 6, 4, 3, 4, 5, 9, 4, 7, 3, 0, 3, 3, 0, 8, 8, 8, 6, 3, 9, 6, 5, 7, 1, 9, 9, 4, 6, 4, 1, 9, 8, 5, 3, 2, 3, 0, 4, 0, 3, 2, 7, 5, 6, 4, 0, 4, 0, 5, 4, 5, 3, 6, 9, 1, 1, 3, 5, 4, 6, 4, 2, 1, 1, 2, 5, 1, 5, 1, 8, 2, 4, 1, 8, 8, 6, 8, 3, 9, 5, 6, 4, 0, 6, 7, 1, 1, 4, 6, 9, 1, 4, 8, 7, 9
Offset: 0

Views

Author

R. J. Mathar, Jan 22 2013

Keywords

Comments

The real root is A075778 (negated). The imaginary parts are plus or minus A210463.
Real root of 8x^3 - 8x^2 + 2x - 1: an algebraic number of degree 3. - Charles R Greathouse IV, Apr 14 2014
The denominator of this algebraic number is 2, since its double is an algebraic integer. - Charles R Greathouse IV, Nov 12 2014

Examples

			0.87743883312334638002475444817926...
		

Crossrefs

Programs

  • Maple
    A075778neg := proc()
            1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
    end proc:
    A210462 := proc()
            local a075778;
            a075778 := A075778neg() ;
            (1+1/a075778/(a075778-1))/2 ;
    end proc:
    evalf(A210462()) ;
  • Mathematica
    (2^(2/3)*(25 + 3*Sqrt[69])^(1/3) + 2^(2/3)*(25 - 3*Sqrt[69])^(1/3) + 4)/12 // RealDigits[#, 10, 125]& // First (* Jean-François Alcover, Feb 20 2013 *)
  • PARI
    real(polroots(x^3-x^2+1))[2] \\ Charles R Greathouse IV, Apr 14 2014
    
  • PARI
    polrootsreal(8*x^3-8*x^2+2*x-1)[1] \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals 1/2 + 1/(2*A075778*(A075778+1)).