A210462 Decimal expansion of the real part of the complex roots of x^3-x^2+1.
8, 7, 7, 4, 3, 8, 8, 3, 3, 1, 2, 3, 3, 4, 6, 3, 8, 0, 0, 2, 4, 7, 5, 4, 4, 4, 8, 1, 7, 9, 2, 6, 4, 3, 4, 5, 9, 4, 7, 3, 0, 3, 3, 0, 8, 8, 8, 6, 3, 9, 6, 5, 7, 1, 9, 9, 4, 6, 4, 1, 9, 8, 5, 3, 2, 3, 0, 4, 0, 3, 2, 7, 5, 6, 4, 0, 4, 0, 5, 4, 5, 3, 6, 9, 1, 1, 3, 5, 4, 6, 4, 2, 1, 1, 2, 5, 1, 5, 1, 8, 2, 4, 1, 8, 8, 6, 8, 3, 9, 5, 6, 4, 0, 6, 7, 1, 1, 4, 6, 9, 1, 4, 8, 7, 9
Offset: 0
Examples
0.87743883312334638002475444817926...
Programs
-
Maple
A075778neg := proc() 1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3; end proc: A210462 := proc() local a075778; a075778 := A075778neg() ; (1+1/a075778/(a075778-1))/2 ; end proc: evalf(A210462()) ;
-
Mathematica
(2^(2/3)*(25 + 3*Sqrt[69])^(1/3) + 2^(2/3)*(25 - 3*Sqrt[69])^(1/3) + 4)/12 // RealDigits[#, 10, 125]& // First (* Jean-François Alcover, Feb 20 2013 *)
-
PARI
real(polroots(x^3-x^2+1))[2] \\ Charles R Greathouse IV, Apr 14 2014
-
PARI
polrootsreal(8*x^3-8*x^2+2*x-1)[1] \\ Charles R Greathouse IV, Apr 14 2014
Comments