cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A075778 Decimal expansion of the real root of x^3 + x^2 - 1.

Original entry on oeis.org

7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7, 7
Offset: 0

Views

Author

Cino Hilliard, Oct 09 2002

Keywords

Comments

Also decimal expansion of the root of x^(1/sqrt(x+1)) = (1/sqrt(x+1))^x. The root of (1/x)^(1/sqrt(x+1)) = (1/sqrt(x+1))^(1/x) is the golden ratio. - Michel Lagneau, Apr 17 2012
The following decomposition holds true: X^3 + X^2 - 1 = (X - r)*(X + i * e^(-i*a) * r^(-1/2))*(X - i * e^(i*a) * r^(-1/2)), where a = arcsin(1/(2*r^(3/2))), see A218197 for the decimal expansion of a and the paper of Witula et al. for details. - Roman Witula, Oct 22 2012

Examples

			0.7548776662466927600495088963585286918946066...
		

References

  • Roman Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, submitted to Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.

Crossrefs

Cf. A060006 (inverse), A210462, A210463.

Programs

  • Maple
    A075778 := proc()
            1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
              -% ;
    end proc: # R. J. Mathar, Jan 22 2013
  • Mathematica
    RealDigits[N[Solve[x^3 + x^2 - 1 == 0, x] [[1]] [[1, 2]], 111]] [[1]]
    RealDigits[x /. FindRoot[x^3 + x^2 == 1, {x, 1}, WorkingPrecision -> 120]][[1]] (* Harvey P. Dale, Nov 23 2012 *)
  • PARI
    solve(x=0, 1, x^3+x^2-1)
    
  • PARI
    polrootsreal(x^3 + x^2 - 1)[1] \\ Charles R Greathouse IV, Jul 23 2020

Formula

Let 0 < a < 1 be any real number. Then a is the lesser and 1 is the greater and a^2/1 = 1/(a+1) and a^3 + a^2 - 1 = 0. Solving this using PARI we have 0.7548776662466927600495088964... . The general cubic can also be solved in radicals.
Equals -(1/3) + (1/3)*(25/2 - (3*sqrt(69))/2)^(1/3) + (1/3)*((1/2)*(25 + 3*sqrt(69)))^(1/3).

Extensions

More terms from Robert G. Wilson v, Oct 10 2002

A078712 Series expansion of (-3 - 2*x)/(1 + x - x^3) in powers of x.

Original entry on oeis.org

-3, 1, -1, -2, 3, -4, 2, 1, -5, 7, -6, 1, 6, -12, 13, -7, -5, 18, -25, 20, -2, -23, 43, -45, 22, 21, -66, 88, -67, 1, 87, -154, 155, -68, -86, 241, -309, 223, 18, -327, 550, -532, 205, 345, -877, 1082, -737, -140, 1222, -1959, 1819, -597, -1362
Offset: 0

Views

Author

Ralf Stephan, Dec 19 2002

Keywords

Comments

This sequence is -A001608(-n), the Perrin sequence for negative n. - T. D. Noe, Oct 10 2006
Similar to the Perrin sequence A001608, I conjecture that if p is a prime then a(p) == 1 (mod p). This implies that A001945(n) == 1 (mod p) and A001608(2*n) == 2 (mod p). - Michael Somos, Dec 25 2022

Examples

			G.f. = -3 + x - x^2 - 2*x^3 + 3*x^4 - 4*x^5 + 2*x^6 + x^7 - 5*x^8 + 7*x^9 + ...
		

Crossrefs

Programs

  • Magma
    I:=[-3, 1, -1]; [n le 3 select I[n] else -Self(n-1)+Self(n-3): n in [1..60]]; // Vincenzo Librandi, May 17 2013
  • Mathematica
    CoefficientList[Series[(2x + 3)/(x^3 - x - 1), {x, 0, 60}], x] (* Harvey P. Dale, Mar 18 2012 *)
    LinearRecurrence[{-1, 0, 1}, {-3, 1, -1}, 60] (* Harvey P. Dale, Mar 18 2012 *)
    a[n_] := If[n < 0, SeriesCoefficient[(-3 + x^2)/(1 - x^2 - x^3), {x, 0, -n}], SeriesCoefficient[(-3 - 2 x)/(1 + x - x^3), {x, 0, n}]]; (* Michael Somos, Oct 15 2017 *)
    Table[RootSum[-1 - # + #^3 &, #^(-n) &], {n, 0, 20}] (* Eric W. Weisstein, Jun 27 2018 *)
    RootSum[-1 - # + #^3 &, #^-Range[0, 20] &] (* Eric W. Weisstein, Jun 27 2018 *)
  • PARI
    Vec((2*x+3)/(x^3-x-1)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • PARI
    {a(n) = if( n<0, polcoeff( (-3 + x^2) / (1 - x^2 - x^3) + x * O(x^-n), -n), polcoeff( (-3 - 2*x) / (1 + x - x^3) + x * O(x^n), n))}; /* Michael Somos, Oct 15 2017 */
    

Formula

a(n) = a(n-3) - a(n-1) with a(0)=-3, a(1)=1, a(2)=-1.
a(n) = A001945(n) - A001608(n).
a(n) ~ 2*real(r^n) with r = 0.87743... + 0.7448617...*i one inverse complex root of x^3 - x - 1 = 0 (A210462, A210463).
2*a(n) = A001608(2*n) - A001608(n)^2 follows from the Binet formula for a(n) = -p^(-n) - r^(-n) - s^(-n), where p, r, s are roots of the Perrin polynomial x^3 - x - 1. - Roman Witula, Jan 31 2013
G.f.: (2*x + 3)/(x^3 - x - 1). - Vincenzo Librandi, May 17 2013

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A210453 Decimal expansion of Sum_{n>=1} 1/(n*binomial(3*n,n)).

Original entry on oeis.org

3, 7, 1, 2, 1, 6, 9, 7, 5, 2, 6, 0, 2, 4, 7, 0, 3, 4, 4, 7, 4, 7, 7, 1, 6, 6, 6, 0, 7, 5, 3, 5, 8, 8, 0, 5, 5, 8, 7, 6, 2, 9, 4, 6, 9, 0, 5, 1, 9, 7, 2, 2, 2, 1, 3, 6, 4, 7, 7, 8, 9, 3, 9, 5, 7, 3, 4, 0, 0, 0, 8, 3, 5, 3, 5, 5, 9, 8, 4, 9, 6, 9, 1, 3, 1, 4, 3, 2, 7, 5, 4, 1, 7, 7, 6, 5, 0, 5, 0, 9, 9, 2, 3, 2, 3, 9, 6, 1, 7, 5, 6, 9, 0, 7, 7, 3, 5, 3, 5, 2, 7, 3, 1, 6, 8, 6
Offset: 0

Views

Author

R. J. Mathar, Jan 21 2013

Keywords

Examples

			0.37121697526024703447477166607535880558762946905197...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press, 2006, p. 60.

Crossrefs

Programs

  • Maple
    A075778neg := proc()
            1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
    end proc:
    A210462 := proc()
            local a075778 ;
            a075778 := A075778neg() ;
            (1+1/a075778/(a075778-1))/2 ;
    end proc:
    A210463 := proc()
            local a075778,a210462 ;
            a075778 := A075778neg() ;
            a210462 := A210462() ;
            -1/a075778-a210462^2 ;
            sqrt(%) ;
    end proc:
    A210453 := proc()
            local v,x;
            v := 0.0 ;
            for x in [ A075778neg(), A210462()+I*A210463(), A210462()-I*A210463() ] do
                    v := v+ x*log(1-1/x)/(3*x-2) ;
            end do:
            evalf(v) ;
    end proc:
    A210453() ;
  • Mathematica
    RealDigits[ HypergeometricPFQ[{1, 1, 3/2}, {4/3, 5/3}, 4/27]/3, 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)

Formula

Equals Sum_{n>=1} 1/(n*A005809(n)).
Equals Integral_{x=0..1} x^2/(1-x^2+x^3) dx.
Equals Sum_(R) R*log(1-1/R)/(3*R-2) where R is summed over the set of the three constants -A075778, A210462-i*A210463 and A210462-i*A210463, i=sqrt(-1), that is, over the set of the three roots of x^3-x^2+1.
Equals (1/sqrt(23)) * (arctan(sqrt(3)/(2*phi-1)) * 18*phi/(phi^2-phi+1) - log((phi^3+1)/(phi+1)^3) * (3*sqrt(3)*phi*(1-phi))/(phi^3+1)), where phi = ((25+3*sqrt(69))/2)^(1/3) (Batir, 2005, p. 378, eq. (3.2)). - Amiram Eldar, Dec 07 2024

A210463 Decimal expansion of the absolute value of the imaginary part of the two complex roots of x^3-x^2+1.

Original entry on oeis.org

7, 4, 4, 8, 6, 1, 7, 6, 6, 6, 1, 9, 7, 4, 4, 2, 3, 6, 5, 9, 3, 1, 7, 0, 4, 2, 8, 6, 0, 4, 3, 9, 2, 3, 6, 7, 2, 4, 0, 1, 6, 3, 0, 8, 4, 9, 0, 6, 8, 2, 4, 5, 7, 4, 2, 0, 1, 8, 4, 7, 5, 9, 2, 1, 5, 4, 4, 1, 5, 2, 1, 7, 8, 3, 7, 8, 3, 9, 7, 6, 7, 7, 9, 1, 1, 4, 3, 7, 5, 4, 9, 3, 2, 9, 6, 4, 1, 5, 9, 0, 3, 9, 2, 5, 2, 8, 0, 4, 8, 7, 3, 3, 7, 7, 3, 6, 6, 0, 3, 3, 4, 3, 8, 9, 4
Offset: 0

Views

Author

R. J. Mathar, Jan 22 2013

Keywords

Comments

An algebraic number of degree 6. - Charles R Greathouse IV, Apr 14 2014
The denominator of this algebraic number is 2, since its double is an algebraic integer. - Charles R Greathouse IV, Nov 12 2014

Examples

			0.744861766619744236593170428604392367240163...
		

Crossrefs

Programs

  • Maple
    A075778neg := proc()
            1/3-root[3](25/2-3*sqrt(69)/2)/3 -root[3](25/2+3*sqrt(69)/2)/3;
    end proc:
    A210463 := proc()
            local a075778,a210462 ;
            a075778 := A075778neg() ;
            a210462 := A210462() ;
            -1/a075778-a210462^2 ;
            sqrt(%) ;
    end proc:
    evalf(A210463()) ;
  • Mathematica
    -((2^(1/3)*(25 - 3*Sqrt[69])^(2/3) - 2)/(2*2^(2/3)*Sqrt[3]*(25 - 3*Sqrt[69])^(1/3))) // RealDigits[#, 10, 125]& // First (* Jean-François Alcover, Feb 20 2013 *)
  • PARI
    polrootsreal(64*x^6+32*x^4+4*x^2-23)[2] \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals sqrt(1/A075778-A210462^2).
Showing 1-4 of 4 results.