A210490 Union of positive squares (A000290 \ {0}) and squarefree numbers (A005117).
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Square Number
- Eric Weisstein's World of Mathematics, Squarefree
- Wikipedia, Squarefree integer
- Wikipedia, Square number
Programs
-
Haskell
a210490 n = a210490_list !! (n-1) a210490_list = filter chi [1..] where chi x = all (== 1) es || all even es where es = a124010_row x
-
PARI
isok(m) = issquare(m) || issquarefree(m); \\ Michel Marcus, Feb 03 2022
-
Python
from math import isqrt from sympy import mobius def A210490(n): def f(x): return int(n+1+x-(y:=isqrt(x))-sum(mobius(k)*(x//k**2) for k in range(1, y+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Mar 23 2025
Extensions
A more precise name from Michel Marcus, Feb 03 2022
Comments