cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A230543 Numbers n that form a Pythagorean quadruple with n', n'' and sqrt(n^2 + n'^2 + n''^2), where n' and n'' are the first and the second arithmetic derivative of n.

Original entry on oeis.org

512, 1203, 3456, 6336, 23328, 42768, 157464, 249753, 288684, 400000, 722718, 1062882, 1948617, 2700000, 4950000, 18225000, 33412500, 105413504, 123018750, 225534375, 312500000, 408918816
Offset: 1

Views

Author

Paolo P. Lava, Oct 25 2013

Keywords

Comments

Tested up to n = 4.09*10^8.

Examples

			If n = 6336 then n' = 23808, n'' = 103936 and sqrt(n^2 + n'^2 + n''^2) = 106816.
		

Crossrefs

Cf. A096907-A096909 and A097263-A097266 for Pythagorean Quadruples.

Programs

  • Maple
    with(numtheory): P:= proc(q) local a1, a2, n, p;
    for n from 2 to q do a1:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    a2:=a1*add(op(2,p)/op(1,p),p=ifactors(a1)[2]);
    if type(sqrt(n^2+a1^2+a2^2),integer) then print(n);
    fi; od; end: P(10^10);

Extensions

a(16)-a(18) from Giovanni Resta, Oct 25 2013
a(19) from Ray Chandler, Dec 22 2016
a(20) from Ray Chandler, Dec 31 2016
a(21) from Ray Chandler, Jan 05 2017
a(22) from Ray Chandler, Jan 09 2017

A249105 Numbers that form a Pythagorean 5-tuple with their first three arithmetic derivatives.

Original entry on oeis.org

4, 27, 1808, 3125, 12204, 12707, 82377, 269827, 823543, 1412500, 7089739, 9534375, 46873785, 78192979, 372241436
Offset: 1

Views

Author

Paolo P. Lava, Oct 21 2014

Keywords

Examples

			First three arithmetic derivatives of 1808 are 3632, 7280, 17616 and sqrt(1808^2 + 3632^2 + 7280^2 + 17616^2) = 19488.
		

Crossrefs

A051674 is a subsequence.

Programs

  • Maple
    with(numtheory);
    Dr:=proc(w) local x,p; x:=w*add(op(2,p)/op(1,p),p=ifactors(w)[2]); end:
    P:=proc(q,h) local a,b,k,n; for n from 2 to q do a:=n; b:=n^2;
    for k from 1 to h do a:=Dr(a); b:=b+a^2; od; if type(sqrt(b),integer) then print(n);
    fi; od; end: P(10^9,3);

Extensions

a(13) from Ray Chandler, Dec 23 2016
a(14) from Ray Chandler, Dec 24 2016
a(15) from Ray Chandler, Jan 08 2017

A249106 Numbers that form a Pythagorean 6-tuple with their first four arithmetic derivatives.

Original entry on oeis.org

19164, 129357, 14971875, 45316123, 434325391
Offset: 1

Views

Author

Paolo P. Lava, Oct 21 2014

Keywords

Examples

			First four arithmetic derivatives of 19164 are 25564, 31848, 58412, 61916 and sqrt(19164^2 + 25564^2 + 31848^2 + 58412^2 + 61916^2) = 96336.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    Dr:=proc(w) local x,p; x:=w*add(op(2,p)/op(1,p),p=ifactors(w)[2]); end:
    P:=proc(q,h) local a,b,k,n; for n from 2 to q do a:=n; b:=n^2;
    for k from 1 to h do a:=Dr(a); b:=b+a^2; od; if type(sqrt(b),integer) then print(n);
    fi; od; end: P(10^9,4);

Extensions

a(4) from Ray Chandler, Dec 23 2016
a(5) from Ray Chandler, Jan 11 2017

A249107 Numbers that form a Pythagorean 7-tuple with their first five arithmetic derivatives.

Original entry on oeis.org

4031, 10823, 416959, 496939, 1354980, 9146115, 38949392, 44472866, 262908396, 380264131
Offset: 1

Views

Author

Paolo P. Lava, Oct 21 2014

Keywords

Comments

If we consider Pythagorean 8-tuple and 9-tuple there are no terms up to n = 10^8.

Examples

			First five arithmetic derivatives of 4031 are 168, 332, 336, 832, 2560 and sqrt(4031^2 + 168^2 + 332^2 + 336^2 + 832^2 + 2560^2) = 4873.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    Dr:=proc(w) local x,p; x:=w*add(op(2,p)/op(1,p),p=ifactors(w)[2]); end:
    P:=proc(q,h) local a,b,k,n; for n from 2 to q do a:=n; b:=n^2;
    for k from 1 to h do a:=Dr(a); b:=b+a^2; od; if type(sqrt(b),integer) then print(n);
    fi; od; end: P(10^9,5);

Extensions

a(5)-a(6) from Ray Chandler, Dec 22 2016
a(7)-a(8) from Ray Chandler, Dec 23 2016
a(9) from Ray Chandler, Jan 02 2017
a(10) from Ray Chandler, Jan 08 2017

A249110 Numbers that form a Pythagorean 10-tuple with their first eight arithmetic derivatives.

Original entry on oeis.org

4, 27, 3125, 398747, 823543
Offset: 1

Views

Author

Paolo P. Lava, Oct 21 2014

Keywords

Examples

			First eight arithmetic derivatives of 398747 are 1692, 2856, 5812, 5816, 8732, 9116, 9500, 15700 and sqrt(398747^2 + 1692^2 + 2856^2 + 5812^2 + 5816^2 + 8732^2 + 9116^2 + 9500^2 + 15700^2) = 399467.
		

Crossrefs

A051674 is a subsequence. - Ray Chandler, Dec 22 2016

Programs

  • Maple
    with(numtheory);
    Dr:=proc(w) local x,p; x:=w*add(op(2,p)/op(1,p),p=ifactors(w)[2]); end:
    P:=proc(q,h) local a,b,k,n; for n from 2 to q do a:=n; b:=n^2;
    for k from 1 to h do a:=Dr(a); b:=b+a^2; od; if type(sqrt(b),integer) then print(n);
    fi; od; end: P(10^9,8);

A211176 Numbers n which are the hypotenuse of a Pythagorean triple with n' as a leg, where n' is the arithmetic derivative of n.

Original entry on oeis.org

125, 625, 23125, 142805, 210125, 371293, 7983625, 9370805, 25757525, 50062025, 120670225, 489766225, 881052625, 1471596725, 2307267625, 2489771125, 3145529225, 3474871553, 6975757441, 7977558641
Offset: 1

Views

Author

Paolo P. Lava, Feb 01 2013

Keywords

Comments

This sequence is a subsequence of A008846. - Ray Chandler, Jan 27 2017

Examples

			n = 23125, n' = 19125 and sqrt(n^2-n'^2) = 13000.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA211176:= proc(q)local a,n,p;
    for n from 2 to q do a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    if n<>a and type(sqrt(n^2-a^2),integer) then print(n); fi;
    od; end: ListA211176(10^9);

Formula

A002144(n)^A002365(n) and A002144(n)^A002366(n) are terms of the sequence for all n. - Ray Chandler, Jan 27 2017

Extensions

Name and Maple program corrected by Paolo P. Lava, Sep 30 2013
a(12)-a(16) from Donovan Johnson, Sep 30 2013
a(17)-a(18) from Ray Chandler, Jan 25 2017
a(19)-a(20) from Ray Chandler, Jan 27 2017
Showing 1-6 of 6 results.