cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210512 Primes formed by concatenating k, k and 3 for k >= 1.

Original entry on oeis.org

113, 223, 443, 773, 883, 10103, 11113, 14143, 25253, 26263, 28283, 32323, 35353, 41413, 50503, 61613, 68683, 71713, 77773, 80803, 83833, 85853, 88883, 97973, 1001003, 1011013, 1101103, 1131133, 1161163, 1181183, 1221223, 1241243, 1281283, 1331333, 1361363, 1391393
Offset: 1

Views

Author

Abhiram R Devesh, Jan 26 2013

Keywords

Comments

This sequence is similar to A030458, A052089 and A210511.
k must not be a multiple of 3, otherwise the concatenation of k, k and 3 will also be a multiple of 3 and therefore not prime. This is a necessary but not sufficient condition.
Some of the terms can be found with this simple process: 5 - 3 = 2 = 1 + 1 giving 113; 7 - 3 = 4 = 2 + 2 giving 223; 11 - 3 = 8 = 4 + 4 giving 443; 17 - 3 = 14 = 7 + 7 giving 773; 19 - 3 = 16 = 8 + 8 giving 883. - J. M. Bergot, Jul 25 2022

Crossrefs

Programs

  • Magma
    [nn3: n in [1..140] | IsPrime(nn3) where nn3 is Seqint([3] cat Intseq(n) cat Intseq(n))]; // Bruno Berselli, Jan 30 2013
  • Mathematica
    Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {3}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 27 2013 *)
  • Python
    import numpy as np
    from functools import reduce
    def factors(n):
        return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) +1) if n % i == 0))
    for i in range(1, 1000):
        p1=int(str(i)+str(i)+"3")
        if len(factors(p1))<3:
            print(p1, end=',')
    
  • Python
    from sympy import isprime
    def xf(n): return int(str(n)*2+'3')
    def ok(n): return isprime(xf(n))
    print(list(map(xf, filter(ok, range(1, 140))))) # Michael S. Branicky, May 21 2021