A210512 Primes formed by concatenating k, k and 3 for k >= 1.
113, 223, 443, 773, 883, 10103, 11113, 14143, 25253, 26263, 28283, 32323, 35353, 41413, 50503, 61613, 68683, 71713, 77773, 80803, 83833, 85853, 88883, 97973, 1001003, 1011013, 1101103, 1131133, 1161163, 1181183, 1221223, 1241243, 1281283, 1331333, 1361363, 1391393
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[nn3: n in [1..140] | IsPrime(nn3) where nn3 is Seqint([3] cat Intseq(n) cat Intseq(n))]; // Bruno Berselli, Jan 30 2013
-
Mathematica
Select[Table[FromDigits[Flatten[{IntegerDigits[n], IntegerDigits[n], {3}}]], {n, 100}], PrimeQ] (* Alonso del Arte, Jan 27 2013 *)
-
Python
import numpy as np from functools import reduce def factors(n): return reduce(list._add_, ([i, n//i] for i in range(1, int(n**0.5) +1) if n % i == 0)) for i in range(1, 1000): p1=int(str(i)+str(i)+"3") if len(factors(p1))<3: print(p1, end=',')
-
Python
from sympy import isprime def xf(n): return int(str(n)*2+'3') def ok(n): return isprime(xf(n)) print(list(map(xf, filter(ok, range(1, 140))))) # Michael S. Branicky, May 21 2021
Comments