cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344491 a(n) = 1 + Sum_{k=0..n-4} binomial(n-3,k) * a(k).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 16, 37, 97, 275, 810, 2468, 7840, 26182, 92047, 339029, 1299185, 5152244, 21091816, 89087652, 388318264, 1746324563, 8094422821, 38608318847, 189179752492, 950930369320, 4898477508796, 25841317224002, 139534769647745, 770795537345237, 4353368099507329
Offset: 0

Views

Author

Ilya Gutkovskiy, May 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n - 3, k] a[k] , {k, 0, n - 4}]; Table[a[n], {n, 0, 31}]
    nmax = 31; A[] = 0; Do[A[x] = (1 + x^3 A[x/(1 - x)])/((1 - x) (1 + x^3)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = (1 + x^3 * A(x/(1 - x))) / ((1 - x) * (1 + x^3)).

A351343 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x/(1 - 2*x)) / (1 - 2*x).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 9, 27, 81, 245, 761, 2493, 8849, 34519, 147057, 670327, 3198561, 15732905, 79174929, 407127897, 2145061729, 11635963499, 65309080185, 380583443187, 2304629301041, 14475031232285, 93943897651017, 627220447621973, 4290783719133041, 29988917377046207
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 08 2022

Keywords

Comments

Shifts 4 places left under 2nd-order binomial transform.

Crossrefs

Programs

  • Mathematica
    nmax = 29; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x/(1 - 2 x)]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = If[n < 4, 1, Sum[Binomial[n - 4, k] 2^k a[n - k - 4], {k, 0, n - 4}]]; Table[a[n], {n, 0, 29}]

Formula

a(0) = ... = a(3) = 1; a(n) = Sum_{k=0..n-4} binomial(n-4,k) * 2^k * a(n-k-4).

A351707 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 * A(x/(1 - x)) / (1 - x)^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 7, 15, 31, 65, 147, 373, 1051, 3157, 9761, 30573, 96965, 313999, 1049719, 3654303, 13284783, 50268837, 196638987, 789611161, 3238765671, 13540348965, 57710600953, 251163156089, 1118308871001, 5100825621147, 23838465463447, 114044805729151
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 31; A[] = 0; Do[A[x] = 1 + x + x^2 + x^3 + x^4 A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[n_] := a[n] = If[n < 4, 1, Sum[Binomial[n - 3, k + 1] a[k], {k, 0, n - 4}]]; Table[a[n], {n, 0, 31}]

Formula

a(0) = ... = a(3) = 1; a(n) = Sum_{k=0..n-4} binomial(n-3,k+1) * a(k).
Showing 1-3 of 3 results.