A210559 Triangle of coefficients of polynomials u(n,x) jointly generated with A210560; see the Formula section.
1, 1, 2, 1, 4, 3, 1, 6, 8, 5, 1, 8, 15, 17, 8, 1, 10, 24, 38, 33, 13, 1, 12, 35, 70, 86, 63, 21, 1, 14, 48, 115, 180, 187, 117, 34, 1, 16, 63, 175, 330, 437, 390, 214, 55, 1, 18, 80, 252, 553, 882, 1007, 791, 386, 89, 1, 20, 99, 348, 868, 1610, 2219, 2235, 1567
Offset: 1
Examples
First five rows: 1 1...2 1...4...3 1...6...8....5 1...8...15...17...8 First three polynomials u(n,x): 1, 1 + 2x, 1 + 4x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210559 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210560 *)
Formula
u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments