cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210565 Triangle of coefficients of polynomials u(n,x) jointly generated with A210595; see the Formula section.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 4, 9, 10, 5, 5, 14, 22, 20, 8, 6, 20, 40, 51, 38, 13, 7, 27, 65, 105, 111, 71, 21, 8, 35, 98, 190, 256, 233, 130, 34, 9, 44, 140, 315, 511, 594, 474, 235, 55, 10, 54, 192, 490, 924, 1295, 1324, 942, 420, 89, 11, 65, 255, 726, 1554, 2534, 3130, 2860, 1836, 744, 144
Offset: 1

Views

Author

Clark Kimberling, Mar 23 2012

Keywords

Comments

Row n starts with n and ends with F(n+1), where F=A000045 (Fibonacci numbers).
Row sums: A005409.
Alternating row sums: 1,0,1,0,1,0,1,0,1,0,1,0, ...
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
  1;
  2,  2;
  3,  5,  3;
  4,  9, 10,  5;
  5, 14, 22, 20, 8;
First three polynomials u(n,x):
u(1, x) = 1;
u(2, x) = 2 + 2*x;
u(3, x) = 3 + 5*x + 3*x^2.
		

Crossrefs

Programs

  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 16;
    u[n_, x_]:= x*u[n-1, x] + (x+1)*v[n-1, x] + 1;
    v[n_, x_]:= x*u[n-1, x] + v[n-1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210565 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210595 *)
    (* Second program *)
    u[n_, x_]:= u[n, x]= If[n<2, (n+1)*(1+x)^n, (1+x)*u[n-1, x] +x^2*u[n-2, x] +1+x];
    T[n_]:= CoefficientList[Series[u[n, x], {x, 0, n}], x];
    Table[T[n-1], {n,12}] (* G. C. Greubel, May 23 2021 *)
  • Sage
    @CachedFunction
    def u(n,x): return (n+1)*(1+x)^n if (n<2) else (1+x)*u(n-1,x) + x^2*u(n-2,x) +1+x
    def T(n): return taylor( u(n,x) , x,0,n).coefficients(x, sparse=False)
    flatten([T(n-1) for n in (1..12)]) # G. C. Greubel, May 23 2021

Formula

u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x) + 1,
v(n,x) = x*u(n-1,x) + v(n-1,x) + 1,
where u(1,x) = 1, v(1,x) = 1.
T(n, k) = [x^k]( u(n, x) ), where u(n, x) = (1+x)*u(n-1,x) + x^2*u(n-2,x) + 1 + x, u(1, x) = 1, and u(2, x) = 2 + 2*x. - G. C. Greubel, May 24 2021