cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210594 "Factor-dense" numbers: integers n where (# of proper divisors of n) / log(n) sets a new record.

Original entry on oeis.org

2, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880, 3603600
Offset: 1

Views

Author

Daniel Bishop, Mar 23 2012

Keywords

Comments

Let d(n) = the number of proper divisors of n (A032741).
Define the "factor density" of n as f(n) = d(n) / log(n).
n is "factor dense" if f(m) < f(n) for all integers m where 2 <= m < n.
Missing highly-composite numbers (A002182) are 4 and 45360.
An alternative definition of factor density is g(n) = tau(n) / log(1+n), where tau(n) is the total number of divisors of n (A000005). Then records for g(n) appear to be set at all members of this sequence together with 1 and 4. - Hal M. Switkay, Sep 07 2022

Crossrefs

Cf. A189686.

Programs

  • Mathematica
    f[n_] := N[(DivisorSigma[0, n] - 1)/Log[n]]; mx = 0; lst = {}; Do[ If[ f[n] > mx, mx = f[n]; AppendTo[lst, n]], {n, 2, 4000000, 2}]; t (* T. D. Noe, Mar 23 2012 *)
  • PARI
    lista(nn) = {my(m=0); for (n=2, nn, my(mm = (numdiv(n)-1)/log(n)); if (mm > m, print1(n, ", "); m = mm););} \\ Michel Marcus, Sep 08 2022