A210622 Decimal expansion of 377/120.
3, 1, 4, 1, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 1
Examples
3.1416666666666666666666666666666666666666666666666666666666...
References
- Petr Beckmann, A History of Pi, 3rd Ed., Boulder, Colorado: The Golem Press (1974): p. 26.
- Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 44.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง3.6 The Quest for Pi, p. 90.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49.
Links
- Dario Castellanos, The ubiquitous Pi, Math. Mag., 61 (1988), pp. 67-98 and pp. 148-163.
- Index entries for linear recurrences with constant coefficients, signature (1).
Programs
-
Mathematica
RealDigits[377/120,10,120][[1]] (* or *) PadRight[{3,1,4,1},120,{6}] (* Harvey P. Dale, Dec 06 2017 *)
-
PARI
377/120. \\ Charles R Greathouse IV, Mar 25 2014
Formula
Equals A021028 plus 3.1. - R. J. Mathar, Mar 27 2012
From Elmo R. Oliveira, Aug 02 2024: (Start)
G.f.: x*(3 + x + 4*x^2 + x^3) + 6*x^5/(1 - x).
a(n) = 6 for n >= 5. (End)
Comments