A210626 Values of the prime-generating polynomial 4*n^2 - 284*n + 3449.
3449, 3169, 2897, 2633, 2377, 2129, 1889, 1657, 1433, 1217, 1009, 809, 617, 433, 257, 89, -71, -223, -367, -503, -631, -751, -863, -967, -1063, -1151, -1231, -1303, -1367, -1423, -1471, -1511, -1543, -1567, -1583, -1591, -1591, -1583, -1567, -1543, -1511, -1471
Offset: 0
References
- Joe L. Mott and Kermite Rose, Prime-Producing Cubic Polynomials, Lecture Notes in Pure and Applied Mathematics (Vol. 220), Marcel Dekker Inc., 2001, pages 281-317.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematic, Prime-Generating Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
LinearRecurrence[{3,-3, 1},{3449,3169,2897},100] (* Vincenzo Librandi, Aug 01 2012 *)
-
PARI
Vec((3449-7178*x+3737*x^2)/(1-x)^3+O(x^99)) \\ Charles R Greathouse IV, Oct 01 2012
Formula
G.f.: (3449 - 7178*x + 3737*x^2)/(1-x)^3. - Bruno Berselli, Jun 07 2012
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(3449 - 280*x + 4*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments