A210645 Area A of the triangles such that A, the sides and one of the altitudes are four consecutive integers of an arithmetic progression d.
84, 336, 756, 1344, 2100, 3024, 4116, 5376, 6804, 8400, 10164, 12096, 14196, 16464, 18900, 21504, 24276, 27216, 30324, 33600, 37044, 40656, 44436, 48384, 52500, 56784, 61236, 65856, 70644, 75600, 80724, 86016, 91476, 97104, 102900, 108864, 114996, 121296
Offset: 1
Keywords
Examples
84 is in the sequence because (a, b, c, h) = (15, 14, 13, 12) => A = sqrt(21*(21-15)*(21-14)*(21-13)) = sqrt(7056) = 84 but A = (1/2)*h*b = (1/2)*12*14 = 84.
Links
- Eric Weisstein, Altitude
Programs
-
Maple
with(numtheory):T:=array(1..1000):k:=0:nn:=800:for q from 1 to nn do: for d from 1 to nn do: a:=q+d:b:=q:c:=q-d:h1:=q-2*d:p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c):if s>0 then s1:=sqrt(s): h11:=2*s1/a: h22:=2*s1/b:h33:=2*s1/c:if s1=floor(s1) and (h1=h11 or h1=h22 or h1=h33) then k:=k+1:T[k]:=s1:else fi:fi:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
Formula
Conjecture: a(n) = 84*n^2. a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: 84*x*(1+x)/(1-x)^3. - Colin Barker, Apr 19 2012
Comments