cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210654 Triangle read by rows: T(n,k) (1 <= k <= n) = number of irreducible coverings by edges of the complete bipartite graph K_{n,k}.

Original entry on oeis.org

1, 1, 2, 1, 6, 15, 1, 14, 48, 184, 1, 30, 165, 680, 2945, 1, 62, 558, 2664, 13080, 63756, 1, 126, 1827, 11032, 59605, 320292, 1748803, 1, 254, 5820, 46904, 281440, 1663248, 9791824, 58746304, 1, 510, 18177, 200232, 1379745, 8906544, 56499849, 361679040, 2361347073
Offset: 1

Views

Author

N. J. A. Sloane, Mar 27 2012

Keywords

Examples

			Triangle begins:
  1;
  1,   2;
  1,   6,   15;
  1,  14,   48,   184;
  1,  30,  165,   680,   2945;
  1,  62,  558,  2664,  13080,   63756;
  1, 126, 1827, 11032,  59605,  320292, 1748803;
  1, 254, 5820, 46904, 281440, 1663248, 9791824, 58746304;
  ...
		

Crossrefs

Cf. A210655.

Programs

  • Maple
    T:= proc(p, q) option remember; `if`(p=1 or q=1, 1,
             add(binomial(q, r)   *T(p-1, q-r), r=2..q-1)
          +q*add(binomial(p-1, s) *T(p-s-1, q-1), s=0..p-2))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Feb 10 2013
  • Mathematica
    T[p_, q_] := T[p, q] = If[p == 1 || q == 1, 1, Sum[Binomial[q, r]*T[p-1, q-r], {r, 2, q-1}] + q*Sum[Binomial[p-1, s]*T[p-s-1, q-1], {s, 0, p-2}]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
  • PARI
    all(m) = {
    mat = matrix(m, m);
    for (i=1, m, for (j=1, m,
       if ((i == 1) || (j == 1), mat[i, j] = 1,
        if (i == j, mat[i, j] = i*mat[i-1,i-1] + sum(s=2,i-1, (s+1)*binomial(i,s)*mat[i-1,i-s]),
         mat[i, j] = sum(r=2, j-1, binomial(j,r)*mat[i-1,j-r]) + j*sum(s=0,i-2,binomial(i-1,s)*mat[i-s-1,j-1]));
       );
      );
    );
    for (i=1, m, for (j=1, i, print1(mat[i,j], ", ");); print(""););
    print("");
    for (i=1, m,print1(mat[i,i], ", "); );
    } \\ Michel Marcus, Feb 10 2013

Formula

E.g.f.: exp(x*exp(y)+y*exp(x)-x-y-x*y)-1. - Alois P. Heinz, Feb 10 2013