cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210664 Square array read by upwards antidiagonals: T(m,n) is the number of simple 3-connected triangulations of a closed region in the plane with m+3 given external edges and 3n+m internal edges, m>=0, n>=1.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 5, 6, 3, 1, 9, 20, 22, 12, 1, 14, 50, 85, 91, 52, 1, 20, 105, 254, 385, 408, 241, 1, 27, 196, 644, 1287, 1836, 1938, 1173, 1, 35, 336, 1448, 3696, 6630, 9120, 9614, 5929, 1, 44, 540, 2967, 9468, 20790, 34846, 46805, 49335, 30880
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

A triangulation is simple if it contains no separating 3-cycle. There are n interior nodes and m+3 nodes on the boundary. - Andrew Howroyd, Feb 24 2021

Examples

			Array begins:
  1,  0,   1,    3,   12, ... (A000256)
  1,  2,   6,   22,   91, ...
  1,  5,  20,   85,  385, ...
  1,  9,  50,  254, 1287, ...
  1, 14, 105,  644, 3696, ...
  1, 20, 196, 1448, 9468, ...
  ...
From _Andrew Howroyd_, Feb 24 2021: (Start)
The array transposed for comparability with A341856 begins:
==================================================
n\m |   0    1    2     3      4      5      6
----+---------------------------------------------
  1 |   1    1    1     1      1      1      1 ...
  2 |   0    2    5     9     14     20     27 ...
  3 |   1    6   20    50    105    196    336 ...
  4 |   3   22   85   254    644   1448   2967 ...
  5 |  12   91  385  1287   3696   9468  22131 ...
  6 |  52  408 1836  6630  20790  58564 151146 ...
  7 | 241 1938 9120 34846 116641 353056 983664 ...
(End)
		

Crossrefs

Rows m=0..3 are A000256, A000139, A341920, A341921.
Columns are A000012, A000096, A002415, A004305.
Antidiagonal sums give A341922.
Cf. A341856.

Programs

  • PARI
    \\ here H is A000256 as g.f., U(n,m) is A341856 for m > 0.
    H(n)={my(g=1+serreverse(x/(1+x)^4 + O(x*x^n) )); 2 - sqrt(serreverse(x*(2-g)^2*g^4)/x)}
    U(n, m)={(3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m, n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!))}
    R(N, m)={my(g=2-H(N)); Vec(if(m==0, 1-g, g^(m+1)*subst(O(x*x^N) + sum(n=1, N, U(n,m)*x^n), x, x*g^2)))}
    M(m, n=m)={Mat(vectorv(m+1, i, R(n,i-1)))}
    M(7) \\ Andrew Howroyd, Feb 23 2021

Formula

From Andrew Howroyd, Feb 24 2021: (Start)
G.f. of row m > 0: R(x) satisfies g(x^2)^(m+1)*R(x*g(x^2)) = B(x^2) where g(x) is the g.f. of column 0 of A341856 and B(x) is the g.f. of column m of A341856.
G.f. of row m > 0: h(x)^(m+1)*B(x*h(x)^2) where 2-h(x) is the g.f. of A000256 and B(x) is the g.f. of column m of A341856.
(End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 23 2021