cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A004305 Simple triangulations of a disk: column 4 of square array in A210664.

Original entry on oeis.org

3, 22, 85, 254, 644, 1448, 2967, 5645, 10109, 17214, 28093, 44212, 67430, 100064, 144959, 205563, 286007, 391190, 526869, 699754, 917608, 1189352, 1525175, 1936649, 2436849, 3040478, 3763997, 4625760, 5646154, 6847744, 8255423, 9896567, 11801195, 14002134, 16535189, 19439318, 22756812, 26533480, 30818839
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A210664.

Formula

a(n) = (n^6 + 15*n^5 + 103*n^4 + 405*n^3 + 976*n^2 + 1236*n + 432)/144.

Extensions

Entry revised by N. J. A. Sloane, Mar 27 2012

A000139 a(n) = 2*(3*n)! / ((2*n+1)!*(n+1)!).

Original entry on oeis.org

2, 1, 2, 6, 22, 91, 408, 1938, 9614, 49335, 260130, 1402440, 7702632, 42975796, 243035536, 1390594458, 8038677054, 46892282815, 275750636070, 1633292229030, 9737153323590, 58392041019795, 352044769046880, 2132866978427640, 12980019040145352, 79319075627675556
Offset: 0

Views

Author

N. J. A. Sloane, entry revised Apr 24 2012

Keywords

Comments

This sequence arises in many different contexts, and over the years it has had several different definitions. I have now changed the definition back to one of the earlier ones, a self-contained formula. - N. J. A. Sloane, Apr 24 2012
The number of 2-stack sortable permutations on n letters (n >= 1).
The number of rooted non-separable planar maps with n+1 edges. - Valery A. Liskovets, Mar 17 2005
The shifted sequence starting with a(1): Number of quadrangular dissections of a square, counted by the number of vertices. Rooted, non-separable planar maps with no multiple edges, in which each non-root face has degree 4.
Number of left ternary trees having n nodes (n>=1). - Emeric Deutsch, Jul 23 2006
A combinatorial interpretation for this sequence in terms of a family of plane trees is given in [Schaeffer, Corollary 2 with k = 3]. - Peter Bala, Oct 12 2011
Number of canopy intervals in the Tamari lattices, see [Préville-Ratelle and Viennot, section 6]. - F. Chapoton, Apr 19 2015
The number of fighting fish (branching polyominoes). - David Bevan, Jan 10 2018
The number of 1324-avoiding dominoes (gridded permutations). - David Bevan, Jan 10 2018
For n > 0, a(n) is the number of simple strong triangulations of a fixed quadrilateral with n interior nodes. See A210664. - Andrew Howroyd, Feb 24 2021
Conjecture: a(n) is odd iff n is a term of A022341. - Peter Bala, Jul 24 2025

Examples

			G.f. = 2 + x + 2*x^2 + 6*x^3 + 22*x^4 + 91*x^5 + 408*x^6 + 1938*x^7 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 365.
  • Eric S. Egge, Defying God: The Stanley-Wilf Conjecture, Stanley-Wilf Limits, and a Two-Generation Explosion of Combinatorics, pp. 65-82 of "A Century of Advancing Mathematics", ed. S. F. Kennedy et al., MAA Press 2015.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. See p. 399 Table A.7
  • W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.41.

Crossrefs

Programs

  • Haskell
    a000139 0 = 2
    a000139 n = ((3 * n) `a007318` (2 * n + 1)) `div` a000217 n
    -- Reinhard Zumkeller, Feb 17 2013
    
  • Magma
    [2*Factorial(3*n)/(Factorial(2*n+1)*Factorial(n+1)): n in [0..25]]; // Vincenzo Librandi, Apr 20 2015
  • Maple
    A000139 := n->2*(3*n)!/((2*n+1)!*((n+1)!)): seq(A000139(n), n=0..23);
  • Mathematica
    Table[(2(3n)!)/((2n+1)!(n+1)!),{n,0,30}] (* Harvey P. Dale, Mar 31 2013 *)
  • PARI
    a(n)=binomial(3*n,n)*2/((n+1)*(2*n+1)); \\ Joerg Arndt, Jul 21 2014
    
  • Python
    from sympy import binomial
    def A000139(n): return (binomial(3*n, n)*2)//((n+1)*(2*n+1))
    
  • Python
    A000139_list = [2]
    for n in range(1,30):
        A000139_list.append(3*(3*n-2)*(3*n-1)*A000139_list[-1]//(2*n+2)//(2*n+1)) # Chai Wah Wu, Apr 02 2021
    
  • Sage
    def A000139(n): return (binomial(3*n, n)*2)//((n+1)*(2*n+1))
    [A000139(n) for n in (0..23)]  # Peter Luschny, Jun 17 2013
    

Formula

a(n) = 2*binomial(3*n, 2*n+1)/(n*(n+1)), or 2*(3*n)!/((2*n+1)!*((n+1)!)).
Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ (27/4)^n / (sqrt(Pi*n / 3) * (2*n + 1) * (n + 1)). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
G.f.: A(z) = 2 + z*B(z), where B(z) = 1 - 8*z + 2*z*(5-6*z)*B - 2*z^2*(1+3*z)*B^2 - z^4*B^3.
G.f.: (2/(3*x)) * (hypergeom([-2/3, -1/3],[1/2],(27/4)*x)-1). - Mark van Hoeij, Nov 02 2009
G.f.: (2-3*R)/(R-1)^2 where R := RootOf(x-t*(t-1)^2,t) is an algebraic function in Maple notation. - Mark van Hoeij, Nov 08 2011
G.f.: 2*Q(0), where Q(k) = 1 + 3*x*(3*k+1)*(6*k+1)/(2*(k+1)*(4*k+3) - 6*x*(k+1)*(3*k+2)*(4*k+3)*(6*k+5)/(3*x*(3*k+2)*(6*k+5) + (2*k+3)*(4*k+5)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
E.g.f.: 2*Q(0), where Q(k) = 1 + 3*x*(3*k+1)*(6*k+1)/(2*(k+1)*(2*k+1)*(4*k+3) - 6*x*(k+1)*(2*k+1)*(3*k+2)*(4*k+3)*(6*k+5)/(3*x*(3*k+2)*(6*k+5) + (2*k+2)*(2*k+3)*(4*k+5)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = A007318(3*n, 2*n+1)/A000217(n) for n > 0. - Reinhard Zumkeller, Feb 17 2013
a(n) is the n-th Hausdorff moment of the positive function w(x) defined on (0,27) which is equal to w(x) = 3*sqrt(3)*2^(2/3)*(3-sqrt(81-12*x)/9)*(1+sqrt(81-12*x)/9)^(1/3)/(8*Pi*x^(2/3))-sqrt(3)*2^(1/3)*(3+sqrt(81-12*x)/9)*(1+sqrt(81-12*x)/9)^(-1/3)/(4*Pi*x^(1/3)), that is, a(n) is the integral Integral_{x=0..27/4} x^n*w(x) dx, n >= 0. The function w(x) is unique. - Karol A. Penson, Jun 17 2013
D-finite with recurrence 2*(n+1)*(2*n+1)*a(n) -3*(3*n-1)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Aug 21 2014
G.f. A(z) is related to the g.f. M(z) of A000168 by M(z) = 1 + A(z*M(z)^2) (see Tutte 1963, equation 6.3). - Noam Zeilberger, Nov 02 2016
From Ilya Gutkovskiy, Jan 17 2017: (Start)
E.g.f.: 2*2F2(1/3,2/3; 3/2,2; 27*x/4).
Sum_{n>=0} 1/a(n) = (1/2)*3F2(1,3/2,2; 1/3,2/3; 4/27) = 2.226206199291261... (End)
G.f. A(z) is the solution to the initial value problem 4*A + 2*z*A' = 8 + 3*z*A + 9*z^2*A' + 2*z^2*A*A', A(0) = 2. - Bjarki Ágúst Guðmundsson, Jul 03 2017
a(n+1) = a(n)*3*(3*n+1)*(3*n+2)/(2*(n+2)*(2*n+3)). - Chai Wah Wu, Apr 02 2021
a(n) = 4*(3*n)!/(n!*(2*n+2)!). - Chai Wah Wu, Dec 15 2021
From Peter Bala, Feb 05 2022: (Start)
O.g.f.: A(x) = T(x)*(3 - T(x)), where T(x) = 1 + x*T(x)^3 is the o.g.f. of A001764.
(1/x)*(A(x) - 2)/(A(x) - 1) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 209*x^5 + ... is the o.g.f. of A233389.
1 + 2*x*A'(2*x)/A(2*x) = 1 + x + 7*x^2 + 61*x^3 + 591*x^4 + 6101*x^6 + ... is the o.g.f. of A218473.
Let B(x) = 1 + x*(A(x) - 1). Then x*B'(x)/B(x) = x + x^2 + 4*x^3 + 17*x^4 + 81*x^5 + ... is the o.g.f. of A121545. (End)

A341856 Array read by antidiagonals: T(n,k) is the number of rooted strong triangulations of a disk with n interior nodes and 3+k nodes on the boundary.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 6, 13, 0, 1, 10, 36, 68, 0, 1, 15, 80, 228, 399, 0, 1, 21, 155, 610, 1518, 2530, 0, 1, 28, 273, 1410, 4625, 10530, 16965, 0, 1, 36, 448, 2933, 12165, 35322, 75516, 118668, 0, 1, 45, 696, 5628, 28707, 102548, 272800, 556512, 857956
Offset: 0

Views

Author

Andrew Howroyd, Feb 23 2021

Keywords

Comments

A strong triangulation is one in which no interior edge joins two nodes on the boundary. Except for the single triangle which is enumerated by T(0,0) these are the 3-connected triangulations.

Examples

			Array begins:
=======================================================
n\k |    0     1     2      3      4      5       6
----+--------------------------------------------------
  0 |    1     0     0      0      0      0       0 ...
  1 |    1     1     1      1      1      1       1 ...
  2 |    3     6    10     15     21     28      36 ...
  3 |   13    36    80    155    273    448     696 ...
  4 |   68   228   610   1410   2933   5628   10128 ...
  5 |  399  1518  4625  12165  28707  62230  125928 ...
  6 | 2530 10530 35322 102548 267162 638624 1422204 ...
  ...
		

Crossrefs

Columns k=0..3 are A000260, A242136, A341917, A341918.
Antidiagonal sums give A341919.
Cf. A146305 (not necessarily strong triangulations), A210664, A341923, A342053.

Programs

  • PARI
    T(n,m)=if(m==0, 2*(4*n+1)!/((3*n+2)!*(n+1)!), (3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m,n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!)))

Formula

T(n,0) = A000260(n) = 2*(4*n+1)!/((3*n+2)!*(n+1)!).
T(n,m) = (3*(m+2)!*(m-1)!/(3*n+3*m+3)!) * Sum_{j=0..min(m,n-1)} (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!) for m > 0.

A000256 Number of simple triangulations of the plane with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 3, 12, 52, 241, 1173, 5929, 30880, 164796, 897380, 4970296, 27930828, 158935761, 914325657, 5310702819, 31110146416, 183634501753, 1091371140915, 6526333259312, 39246152584304, 237214507388796, 1440503185260748
Offset: 3

Views

Author

Keywords

Comments

A triangulation is simple if it contains no separating 3-cycle. The triangulations are rooted with three fixed exterior nodes. - Andrew Howroyd, Feb 24 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, The enumerative theory of planar maps, pp. 437-448 of J. N. Srivastava, ed., A Survey of Combinatorial Theory, North-Holland, 1973.

Crossrefs

First row of array in A210664.

Programs

  • Maple
    R := RootOf(x-t*(t-1)^2, t); ogf := series( (2*R^3+2*R^2-2*R-1)/((R-1)*(R+1)^2), x=0, 20); # Mark van Hoeij, Nov 08 2011
  • Mathematica
    r = Root[x - t*(t - 1)^2, t, 1] ; CoefficientList[ Series[(2*r^3 + 2*r^2 - 2*r - 1)/((r - 1)*(r + 1)^2), {x, 0, 24}], x] (* Jean-François Alcover, Mar 14 2012, after Maple *)
  • PARI
    A000260_ser(N) = {
      my(v = vector(N, n, binomial(4*n+2, n+1)/((2*n+1)*(3*n+2))));
      Ser(concat(1,v));
    };
    A000256_seq(N) = {
      my(g = A000260_ser(N)); Vec(subst(2 - 1/g, 'x, serreverse(x*g^2)));
    };
    A000256_seq(24)
    \\ test: y = Ser(A000256_seq(200)); 0 == x*(x+4)^2*y^3 - x*(6*x^2+51*x+76)*y^2 + (12*x^3+108*x^2+115*x-1)*y - (8*x^3+76*x^2+54*x-1)
    \\ Gheorghe Coserea, Jul 31 2017
    
  • PARI
    seq(n)={my(g=1+serreverse(x/(1+x)^4 + O(x*x^n) )); Vec(2 - sqrt(serreverse( x*(2-g)^2*g^4)/x ))} \\ Andrew Howroyd, Feb 23 2021

Formula

a(n) = (1/4)*(7*binomial(3*n-9, n-4)-(8*n^2-43*n+57)*a(n-1)) / (8*n^2-51*n+81), n>4. - Vladeta Jovovic, Aug 19 2004
(1/4 + 7/8*n - 9/8*n^3)*a(n) + (-5/4 + 2/3*n + 59/12*n^2 - 13/3*n^3)*a(n+1) + (-1 - 2/3*n + n^2 + 2/3*n^3)*a(n+2). - Simon Plouffe, Feb 09 2012
a(n) ~ 3^(3*n-6+1/2)/(2^(2*n+3)*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Aug 13 2013
From Gheorghe Coserea, Jul 31 2017: (Start)
G.f. y(x) satisfies (with offset 0):
y(x*g^2) = 2 - 1/g, where g=A000260(x). (eqn 2.6 in Tutte's paper)
0 = x*(x+4)^2*y^3 - x*(6*x^2+51*x+76)*y^2 + (12*x^3+108*x^2+115*x-1)*y - (8*x^3+76*x^2+54*x-1).
0 = x*(27*x-4)*deriv(y,x) + x*(7*x+28)*y^2 - 2*(14*x^2+45*x+1)*y + 2*(14*x^2+34*x+1).
(End)

Extensions

More terms from Vladeta Jovovic, Aug 19 2004

A341920 Number of simple strong triangulations of a fixed pentagon with n interior nodes.

Original entry on oeis.org

1, 5, 20, 85, 385, 1836, 9120, 46805, 246675, 1328925, 7292688, 40652780, 229698220, 1313175880, 7585060680, 44212723797, 259808593975, 1537840085775, 9162371040900, 54913015836525, 330888232445505, 2003659057873200, 12187811305300800, 74444226847892460, 456458831442283860
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2021

Keywords

Crossrefs

Row m = 2 of A210664.

Programs

  • PARI
    R(25,2) \\ R defined in A210664.

Formula

From Peter Bala, Feb 06 2022: (Start)
Conjectures:
a(n) = 5*(5*n-3)*binomial(3*n,n)/((n+1)*(2*n+1)*(2*n+3)).
a(n+1) = 3*(3*n+1)*(3*n+2)*(5*n+2)/(2*(n+2)*(2*n+5)*(5*n-3))*a(n). (End)

A341921 Number of simple strong triangulations of a fixed hexagon with n interior nodes.

Original entry on oeis.org

1, 9, 50, 254, 1287, 6630, 34846, 186714, 1018095, 5638035, 31651992, 179850344, 1032901028, 5988670002, 35017696806, 206326044386, 1224068679855, 7307391855855, 43871253636210, 264755875041630, 1605357997312335, 9776732655285960, 59781214452500424, 366905787075963864
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2021

Keywords

Crossrefs

Row m=3 of A210664.
Cf. A341918.

Programs

  • PARI
    R(25,3) \\ R defined in A210664.

A341922 Number of simple 3-connected triangulations of a disk with n nodes.

Original entry on oeis.org

1, 1, 4, 15, 64, 293, 1414, 7102, 36809, 195676, 1062176, 5867676, 32901124, 186866589, 1073261418, 6225028476, 36420849235, 214744648169, 1275005642668, 7617704400227, 45772485843616, 276460659973100, 1677717692649544, 10225697003966360, 62575895785795084
Offset: 4

Views

Author

Andrew Howroyd, Feb 24 2021

Keywords

Comments

A triangulation is simple if it contains no separating 3-cycle.

Examples

			The a(5) = 1 triangulation is:
      o-------o
      | \   / |
      |   o   |
      | /   \ |
      o-------o
		

Crossrefs

Antidiagonal sums of A210664.

Programs

  • PARI
    \\ R(n,m) defined in A210664.
    seq(n)={my(v=R(n,0)); for(m=1, n-1, v+=concat(vector(m), R(n-m,m))); v}
Showing 1-7 of 7 results.