cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000260 Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices.

Original entry on oeis.org

1, 1, 3, 13, 68, 399, 2530, 16965, 118668, 857956, 6369883, 48336171, 373537388, 2931682810, 23317105140, 187606350645, 1524813969276, 12504654858828, 103367824774012, 860593023907540, 7211115497448720, 60776550501588855
Offset: 0

Views

Author

Keywords

Comments

Number of rooted loopless planar maps with n edges. E.g., there are a(2)=3 loopless planar maps with 2 edges: two rooted paths (.-.-.) and one digon (.=.). - Valery A. Liskovets, Sep 25 2003
Number of intervals (i.e., ordered pairs (x,y) such that x<=y) in the Tamari lattice (rotation lattice of binary trees) of size n (see Pallo and Chapoton references). - Ralf Stephan, May 08 2007, Jean Pallo (Jean.Pallo(AT)u-bourgogne.fr), Sep 11 2007
Number of rooted triangulations of type [n, 0] (see Brown paper eq (4.8)). - Michel Marcus, Jun 23 2013
Equivalently, number of rooted bridgeless planar maps with n edges. - Noam Zeilberger, Oct 06 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
Number of uniquely sorted permutations of [2n+1] that avoid the pattern 231. Also the number of uniquely sorted permutations of [2n+1] that avoid 132. - Colin Defant, Jun 13 2019
The sequence 1,3,13,68,... appears naturally in integral geometry, namely in the algebra of unitarily invariant valuations on complex space forms. - Andreas Bernig, Feb 02 2020

Examples

			G.f. = 1 + x + 3*x^2 + 13*x^3 + 68*x^4 + 399*x^5 + 2530*x^6 + 16965*x^7 + ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • Handbook of Combinatorics, North-Holland '95, p. 891.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, The enumerative theory of planar maps, in A Survey of Combinatorial Theory (J. N. Srivastava et al. eds.), pp. 437-448, North-Holland, Amsterdam, 1973.

Crossrefs

Row sums of A342981.
Column 0 of A146305 and A341856; Column 2 of A255918.
Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • Magma
    [Binomial(4*n+1, n+1)-9*Binomial(4*n+1, n-1): n in [0..25]]; // Vincenzo Librandi, Nov 24 2016
  • Maple
    A000260 := proc(n)
        2*(4*n+1)!/((n+1)!*(3*n+2)!) ;
    end proc:
  • Mathematica
    Table[Binomial[4n+1,n+1]-9*Binomial[4n+1,n-1],{n,0,25}] (* Harvey P. Dale, Aug 23 2011 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 3/4, 1, 5/4}, {4/3, 5/3, 2}, 256/27 x], {x, 0, n}]; (* Michael Somos, Dec 23 2014 *)
    terms = 22; G[] = 0; Do[G[x] = 1+x*G[x]^4 + O[x]^terms, terms];
    CoefficientList[(2-G[x])*G[x]^2, x] (* Jean-François Alcover, Jan 13 2018, after Mark van Hoeij *)
  • PARI
    {a(n) = if( n<0, 0, 2 * (4*n + 1)! / ((n + 1)! * (3*n + 2)!))}; /* Michael Somos, Sep 07 2005 */
    
  • PARI
    {a(n) = binomial( 4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2))}; /* Michael Somos, Mar 28 2012 */
    
  • Sage
    def a(n):
        n = ZZ(n)
        return (4*n + 2).binomial(n + 1) // ((2*n + 1) * (3*n + 2))
    # F. Chapoton, Aug 06 2015
    

Formula

a(n) = 2*(4*n+1)! / ((n+1)!*(3*n+2)!) = binomial(4*n+1, n+1) - 9*binomial(4*n+1, n-1).
G.f.: (2-g)*g^2 where g = 1 + x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 10 2011
G.f.: hypergeom([1,1/2,3/4,5/4],[2,4/3,5/3],256*x/27) = 1 + 120*x/(Q(0)-120*x); Q(k) = 8*x*(2*k+1)*(4*k+3)*(4*k+5) + 3*(k+2)*(3*k+4)*(3*k+5) - 24*x*(k+2)*(2*k+3)*(3*k+4)*(3*k+5)*(4*k+7)*(4*k+9)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2011
a(n) = binomial(4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2)). - Michael Somos, Mar 28 2012
a(n) * (n+1) = A069271(n). - Michael Somos, Mar 28 2012
0 = F(a(n), a(n+1), ..., a(n+8)) for all n in Z where a(-1) = 3/4 and F() is a polynomial of degree 2 with integer coefficients and 29 monomials. - Michael Somos, Dec 23 2014
D-finite with recurrence: 3*(3*n+2)*(3*n+1)*(n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 21 2015
a(n) = Sum_{k=1..A000108(n)} k * A263191(n,k). - Alois P. Heinz, Nov 16 2015
a(n) ~ 2^(8*n+7/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n+5/2)). - Vaclav Kotesovec, Feb 26 2016
E.g.f.: 3F3(1/2,3/4,5/4; 4/3,5/3,2; 256*x/27). - Ilya Gutkovskiy, Feb 01 2017
From Gheorghe Coserea, Aug 17 2017: (Start)
G.f. y(x) satisfies:
0 = x^3*y^4 + 3*x^2*y^3 + x*(8*x+3)*y^2 - (20*x-1)*y + 16*x-1.
0 = x*(256*x - 27)*deriv(y,x) - 8*x^2*y^3 - 25*x*y^2 + 4*(24*x-11)*y + 44.
(End)
From Karol A. Penson, Apr 06 2022: (Start)
a(n) = Integral_{x=0...256/27} x^n*W(x), where
W(x) = (sqrt(2)/Pi)*(h1(x) - h2(x) + h3(x)) and
h1(x) = 3F2([-6/12,-2/12, 2/12], [ 3/12, 9/12], (27*x)/256)/((x/2)^(1/2));
h2(x) = 3F2([-3/12, 1/12, 5/12], [ 6/12, 15/12], (27*x)/256)/(x^(1/4));
h3(x) = 3F2([ 3/12, 7/12, 11/12], [18/12, 21/12], (27*x)/256)/(x^(-1/4)*32).
This integral representation is unique as the solution of n-th Hausdorff power moment of the function W. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 256/27. (End)
a(n) = (1/27^n) * Product_{1 <= i <= j <= 3*n} (3*i + j + 3)/(3*i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023

Extensions

Edited by F. Chapoton, Feb 03 2011

A085357 Common residues of binomial(3n,n)/(2n+1) modulo 2: relates ternary trees (A001764) to the infinite Fibonacci word (A003849).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2003

Keywords

Comments

The n-th runs of ones is given by: 3 - A003849(n) (infinite Fibonacci word) = A076662(n+1). Runs of zeros are given by: A085358 and are also directly related to the Fibonacci sequence. Coefficients of A(x)^3 are found in A085359.
a(n) = 0 iff some binary digit of n is 1 while the corresponding binary digit of 3*n is 0. - Robert Israel, Jul 12 2016
The Run Length Transform of [0,1,0,0,0,...], A063524, the characteristic function of 1. (See A227349 for the definition). - Antti Karttunen, Oct 15 2016

Crossrefs

Cf. A001764 (ternary trees), A085358 (runs of zeros), A076662 (runs of ones), A003849 (infinite Fibonacci word), A085359 (A(x)^3).
Absolute values of A132971.

Programs

  • Magma
    [Binomial(3*n,n) mod 2: n in [0..100]]; // Vincenzo Librandi, Jul 09 2016
    
  • Maple
    f:= proc(n) local L,Lp;
      L:= convert(n,base,2);
      Lp:= convert(3*n,base,2);
      if has(L-Lp[1..nops(L)],1) then 0 else 1 fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Jul 12 2016
  • Mathematica
    Table[Mod[Binomial[3 n, n], 2], {n, 0, 120}] (* Michael De Vlieger, Jul 08 2016 *)
  • PARI
    A085357(n) = !bitand(n,n<<1); \\ Antti Karttunen, Aug 22 2019
    
  • Python
    def A085357(n): return int(not n&(n<<1)) # Chai Wah Wu, Jun 25 2025

Formula

G.f.: 1 + x*A(x)^3 = A(x) (Mod 2); a(n) = A001764(n) (Mod 2).
a(n) = binomial(3n, n) (mod 2). Characteristic function of Fibbinary numbers (i.e. a(n)=1 iff n is in A003714). - Benoit Cloitre, Nov 15 2003
Recurrence: a(0) = 1, a(2n) = a(4n+1) = a(n), a(4n+3) = 0.
a(n-2) = A000256(n)(mod 2), for n>2. - John M. Campbell, Jul 08 2016
a(n) = A000621(n+1)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A000625(n)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A008966(A005940(1+n)). [Follows from the Run Length Transform interpretation, see also A277010.] - Antti Karttunen, Oct 15 2016
a(n) = abs(A132971(n)) = abs(A008683(A005940(1+n))). - Antti Karttunen, May 30 2017

A210664 Square array read by upwards antidiagonals: T(m,n) is the number of simple 3-connected triangulations of a closed region in the plane with m+3 given external edges and 3n+m internal edges, m>=0, n>=1.

Original entry on oeis.org

1, 1, 0, 1, 2, 1, 1, 5, 6, 3, 1, 9, 20, 22, 12, 1, 14, 50, 85, 91, 52, 1, 20, 105, 254, 385, 408, 241, 1, 27, 196, 644, 1287, 1836, 1938, 1173, 1, 35, 336, 1448, 3696, 6630, 9120, 9614, 5929, 1, 44, 540, 2967, 9468, 20790, 34846, 46805, 49335, 30880
Offset: 0

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Comments

A triangulation is simple if it contains no separating 3-cycle. There are n interior nodes and m+3 nodes on the boundary. - Andrew Howroyd, Feb 24 2021

Examples

			Array begins:
  1,  0,   1,    3,   12, ... (A000256)
  1,  2,   6,   22,   91, ...
  1,  5,  20,   85,  385, ...
  1,  9,  50,  254, 1287, ...
  1, 14, 105,  644, 3696, ...
  1, 20, 196, 1448, 9468, ...
  ...
From _Andrew Howroyd_, Feb 24 2021: (Start)
The array transposed for comparability with A341856 begins:
==================================================
n\m |   0    1    2     3      4      5      6
----+---------------------------------------------
  1 |   1    1    1     1      1      1      1 ...
  2 |   0    2    5     9     14     20     27 ...
  3 |   1    6   20    50    105    196    336 ...
  4 |   3   22   85   254    644   1448   2967 ...
  5 |  12   91  385  1287   3696   9468  22131 ...
  6 |  52  408 1836  6630  20790  58564 151146 ...
  7 | 241 1938 9120 34846 116641 353056 983664 ...
(End)
		

Crossrefs

Rows m=0..3 are A000256, A000139, A341920, A341921.
Columns are A000012, A000096, A002415, A004305.
Antidiagonal sums give A341922.
Cf. A341856.

Programs

  • PARI
    \\ here H is A000256 as g.f., U(n,m) is A341856 for m > 0.
    H(n)={my(g=1+serreverse(x/(1+x)^4 + O(x*x^n) )); 2 - sqrt(serreverse(x*(2-g)^2*g^4)/x)}
    U(n, m)={(3*(m+2)!*(m-1)!/(3*n+3*m+3)!)*sum(j=0, min(m, n-1), (4*n+3*m-j+1)!*(m+j+2)*(m-3*j)/(j!*(j+1)!*(m-j)!*(m-j+2)!*(n-j-1)!))}
    R(N, m)={my(g=2-H(N)); Vec(if(m==0, 1-g, g^(m+1)*subst(O(x*x^N) + sum(n=1, N, U(n,m)*x^n), x, x*g^2)))}
    M(m, n=m)={Mat(vectorv(m+1, i, R(n,i-1)))}
    M(7) \\ Andrew Howroyd, Feb 23 2021

Formula

From Andrew Howroyd, Feb 24 2021: (Start)
G.f. of row m > 0: R(x) satisfies g(x^2)^(m+1)*R(x*g(x^2)) = B(x^2) where g(x) is the g.f. of column 0 of A341856 and B(x) is the g.f. of column m of A341856.
G.f. of row m > 0: h(x)^(m+1)*B(x*h(x)^2) where 2-h(x) is the g.f. of A000256 and B(x) is the g.f. of column m of A341856.
(End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 23 2021

A000287 Number of rooted polyhedral graphs with n edges.

Original entry on oeis.org

1, 0, 4, 6, 24, 66, 214, 676, 2209, 7296, 24460, 82926, 284068, 981882, 3421318, 12007554, 42416488, 150718770, 538421590, 1932856590, 6969847486, 25237057110, 91729488354, 334589415276, 1224445617889, 4494622119424
Offset: 6

Views

Author

Keywords

Comments

a(n) appears to be odd if and only if n = 2^k - 2 for some integer k >= 3. - Lewis Chen, May 05 2019

Examples

			G.f. = x^6 + 4*x^8 + 6*x^9 + 24*x^10 + 66*x^11 + 214*x^12 + 676*x^13 + ...
		

References

  • Handbook of Combinatorics, North-Holland '95, p. 892. (Gives different last term)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, Three-connected planar maps. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 43--52. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0335323 (49 #105). - From N. J. A. Sloane, Jun 05 2012

Crossrefs

Cf. A000256.

Programs

  • Mathematica
    a[6] = 1; a[n_] := a[n] = ((9*(5 - 3*n)*n - 16)*a[n-1]*((n-1)!)^2 + 2*((-1)^n*(9*n*(3*n - 17) + 160)*((n-1)!)^2 + ((2*n - 2)!)))/(2*(9*n*(3*n - 11) + 88)*((n-1)!)^2); Table[ a[n], {n, 6, 31}] (* Jean-François Alcover, Oct 04 2011, after formula *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+5)));
      Vec(x^2 - 2*x^3/(1+x) + x*(2*x^2-10*x-1+(1-4*x)^(3/2))/(2*(x+2)^3));
    };
    seq(26)
    \\ test: y=Ser(seq(101))*x^6; 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6
    \\ Gheorghe Coserea, Sep 27 2018

Formula

a(n) = b(n-1) + 2*(-1)^n, n >= 4, where b(3)=2, b(n) = (2*(2*n)!/(n!)^2 - (27*n^2+9*n-2)*b(n-1)) / (54*n^2-90*n+32). - Sean A. Irvine, Apr 14 2010
(n - 1)*a(n) = ((3/2)*n - 21/2)*a(n-1) + (8*n - 36)*a(n-2) + ((15/2)*n - 63/2)*a(n-3) + (2*n - 7)*a(n-4). - Simon Plouffe, Feb 09 2012 [Corrected by Matthew House, Sep 03 2024]
Liu Yanpei gives another recurrence. - N. J. A. Sloane, Mar 28 2012
a(n) ~ 2^(2*n+1)/(3^5*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Jul 19 2013
From Gheorghe Coserea, Apr 15 2017: (Start)
G.f.: x^2 - 2*x^3/(1+x) + x*(2*x^2-10*x-1+(1-4*x)^(3/2))/(2*(x+2)^3).
0 = x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6, where y is the g.f. (End)

Extensions

More terms from Sean A. Irvine, Apr 14 2010
Librandi b-file verified by N. J. A. Sloane, Mar 29 2012

A341920 Number of simple strong triangulations of a fixed pentagon with n interior nodes.

Original entry on oeis.org

1, 5, 20, 85, 385, 1836, 9120, 46805, 246675, 1328925, 7292688, 40652780, 229698220, 1313175880, 7585060680, 44212723797, 259808593975, 1537840085775, 9162371040900, 54913015836525, 330888232445505, 2003659057873200, 12187811305300800, 74444226847892460, 456458831442283860
Offset: 1

Views

Author

Andrew Howroyd, Feb 24 2021

Keywords

Crossrefs

Row m = 2 of A210664.

Programs

  • PARI
    R(25,2) \\ R defined in A210664.

Formula

From Peter Bala, Feb 06 2022: (Start)
Conjectures:
a(n) = 5*(5*n-3)*binomial(3*n,n)/((n+1)*(2*n+1)*(2*n+3)).
a(n+1) = 3*(3*n+1)*(3*n+2)*(5*n+2)/(2*(n+2)*(2*n+5)*(5*n-3))*a(n). (End)
Showing 1-5 of 5 results.