cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A241602 Erroneous version of A000287.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 4, 6, 24, 214
Offset: 1

Views

Author

N. J. A. Sloane, May 19 2014, corrected Feb 05 2018

Keywords

Comments

Old name was: Number of 3-connected maps with n edges.

A290326 Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 3, 0, 0, 0, 3, 24, 33, 13, 0, 0, 0, 0, 33, 188, 338, 252, 68, 0, 0, 0, 0, 13, 338, 1705, 3580, 3740, 1938, 399, 0, 0, 0, 0, 0, 252, 3580, 16980, 39525, 51300, 38076, 15180, 2530, 0, 0, 0, 0, 0, 68, 3740, 39525, 180670, 452865, 685419, 646415, 373175, 121095, 16965, 0, 0, 0, 0, 0, 0, 1938, 51300, 452865, 2020120, 5354832, 9095856, 10215450, 7580040, 3585270, 981708, 118668
Offset: 1

Views

Author

Gheorghe Coserea, Jul 27 2017

Keywords

Comments

Row n >= 3 contains 2*n-3 terms.
c-nets are 3-connected rooted planar maps. This array also counts simple triangulations.
Table in Mullin & Schellenberg has incorrect values T(14,14) = 43494961412, T(15,13) = 21697730849, T(15,14) = 131631305614, T(15,15) = 556461655783. - Sean A. Irvine, Sep 28 2015

Examples

			A(x;t) = t^3*x^3 + (4*t^4 + 3*t^5)*x^4 + (3*t^4 + 24*t^5 + 33*t^6 + 13*t^7)*x^5 + ...
Triangle starts:
n\k  [1] [2] [3] [4] [5] [6]  [7]   [8]    [9]    [10]   [11]   [12]   [13]
[1]  0;
[2]  0,  0;
[3]  0,  0,  1;
[4]  0,  0,  0,  4,  3;
[5]  0,  0,  0,  3,  24, 33,  13;
[6]  0,  0,  0,  0,  33, 188, 338,  252,   68;
[7]  0,  0,  0,  0,  13, 338, 1705, 3580,  3740,  1938,  399;
[8]  0,  0,  0,  0,  0,  252, 3580, 16980, 39525, 51300, 38076, 15180, 2530;
[9]  ...
		

Crossrefs

Rows/Columns sum give A106651 (enumeration of c-nets by the number of vertices).
Antidiagonals sum give A000287 (enumeration of c-nets by the number of edges).

Programs

  • PARI
    T(n,k) = {
      if (n < 3 || k < 3, return(0));
      sum(i=0, k-1, sum(j=0, n-1,
         (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
         (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
          4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
    };
    N=10; concat(concat([0,0,0], apply(n->vector(2*n-3, k, T(n,k)), [3..N])))
    \\ test 1: N=100; y=x*Ser(vector(N, n, sum(i=1+(n+2)\3, (2*n)\3-1, T(i,n-i)))); 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6
    /*
    \\ test 2:
    x='x; t='t; N=44; y=Ser(apply(n->Polrev(vector(2*n-3, k, T(n, k)), 't), [3..N+2]), 'x) * t*x^3;
    0 == (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1)
    */

Formula

T(n,k) = Sum_{i=0..k-1} Sum_{j=0..n-1} (-1)^(i+j+1) * ((i+j+2)!/(2!*i!*j!)) * (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) - 4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2)) for all n >= 3, k >= 3.
A106651(n+1) = Sum_{k=1..2*n-3} T(n,k) for n >= 3.
A000287(n) = Sum_{i=1+floor((n+2)/3)..floor(2*n/3)-1} T(i,n-i).
A001506(n) = T(n,n), A001507(n) = T(n+1,n), A001508(n) = T(n+2,n).
A000260(n-2) = T(n, 2*n-3) for n>=3.
G.f. y = A(x;t) satisfies: 0 = (t + 1)^3*(x + 1)^3*(t + x + t*x)^3*y^4 + t*(t + 1)^2*x*(x + 1)^2*((4*t^4 + 12*t^3 + 12*t^2 + 4*t)*x^4 + (12*t^4 + 16*t^3 - 4*t^2 - 8*t)*x^3 + (12*t^4 - 4*t^3 - 49*t^2 - 30*t + 3)*x^2 + (4*t^4 - 8*t^3 - 30*t^2 - 21*t)*x + 3*t^2)*y^3 + t^2*(t + 1)*x^2*(x + 1)*((6*t^5 + 18*t^4 + 18*t^3 + 6*t^2)*x^5 + (18*t^5 + 12*t^4 - 30*t^3 - 24*t^2)*x^4 + (18*t^5 - 30*t^4 - 123*t^3 - 58*t^2 + 17*t)*x^3 + (6*t^5 - 24*t^4 - 58*t^3 + 25*t^2 + 56*t)*x^2 + (17*t^3 + 56*t^2 + 48*t + 3)*x + 3*t)*y^2 + t^3*x^3*((4*t^6 + 12*t^5 + 12*t^4 + 4*t^3)*x^6 + (12*t^6 - 36*t^4 - 24*t^3)*x^5 + (12*t^6 - 36*t^5 - 99*t^4 - 26*t^3 + 25*t^2)*x^4 + (4*t^6 - 24*t^5 - 26*t^4 + 81*t^3 + 80*t^2)*x^3 + (25*t^4 + 80*t^3 + 44*t^2 - 14*t)*x^2 + (-14*t^2 - 17*t)*x + 1)*y + t^6*x^6*((t^4 + 2*t^3 + t^2)*x^4 + (2*t^4 - 7*t^3 - 9*t^2)*x^3 + (t^4 - 9*t^3 + 11*t)*x^2 + (11*t^2 + 13*t)*x - 1). - Gheorghe Coserea, Sep 29 2018

A343871 Number of labeled 3-connected planar graphs with n edges.

Original entry on oeis.org

1, 0, 15, 70, 432, 4320, 30855, 294840, 2883240, 28175952, 310690800, 3458941920, 40459730640, 499638948480, 6324655705200, 83653192972800, 1145266802114400, 16145338385736000, 235579813593453000, 3535776409508703360, 54571687068401395200, 866268656574795936000
Offset: 6

Views

Author

Andrew Howroyd, May 05 2021

Keywords

Crossrefs

Cf. A000287, A002840 (unlabeled case), A096330, A290326, A291841, A338414.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices (see A290326)
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    a(n)={sum(k=2+(n+2)\3, 2*n\3, k!*Q(n,k))/(4*n)} \\ Andrew Howroyd, May 05 2021

Formula

a(n) = Sum_{k=2+floor((n+2)/3)..floor(2*n/3)} k!*A290326(n-k+1, k-1)/(4*n).

A047051 Prime alternating tangle types (of knots) with n crossings.

Original entry on oeis.org

1, 2, 4, 10, 29, 98, 372, 1538, 6755, 30996, 146982, 715120, 3552254, 17951322, 92045058, 477882876, 2508122859, 13289437362, 71010166670, 382291606570, 2072025828101, 11298920776704, 61954857579594, 341427364138880
Offset: 1

Views

Author

Keywords

Comments

G.f. is related to the classes of 2- and 3-connected planar maps with n edges. Further terms are known.

References

  • C. Sundberg and M. Thistlethwaite, The rate of growth of the number of prime alternating links and tangles, Pacif. J. Math., 182, No 2 (1998), 329-358.

Crossrefs

Programs

  • Mathematica
    max = 24; Clear[a, eq, s]; gf = Sum[a[k]*x^k, {k, 0, max}]; a[0] = 0; a[1] = 1; a[2] = 2; coes = CoefficientList[(x^4 - 2*x^3 + x^2)*gf^5 + (8*x^4 - 14*x^3 + 8*x^2 - 2*x)*gf^4 + (25*x^4 - 16*x^3 - 14*x^2 + 8*x + 1)*gf^3 + (38*x^4 + 15*x^3 - 30*x^2 - x + 2)*gf^2 + (28*x^4 + 36*x^3 - 5*x^2 - 12*x + 1)*gf + 8*x^4 + 17*x^3 + 8*x^2 - x, x]; eq[n_] := eq[n] = If[n == 1, Thread[Drop[coes, 3] == 0], eq[n-1] /. s[n-1] // First]; s[n_] := s[n] = (Print["n = ", n]; Solve[eq[n][[n]], a[n+2]]); sol = Table[s[n], {n, 1, max-2}] // Flatten; Table[a[n], {n, 1, max}] /. sol (* Jean-François Alcover, Apr 15 2014 *)

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007

A111157 Numbers k such that sequence A_k in this database does not contain a prime.

Original entry on oeis.org

4, 7, 12, 35, 56, 66, 82, 118, 132, 141, 143, 144, 145, 152, 156, 173, 252
Offset: 1

Views

Author

N. J. A. Sloane, following a suggestion of Alonso del Arte, Oct 21 2005

Keywords

Comments

That is, the complete sequence A_k, not just the terms that are shown in the entry, does not contain a prime or the negative of a prime. The only exception to this is for sequences with keyword "dead", when only the visible terms are to be considered.
No other terms below 287. Is 287 a member? This requires proof.
I've checked A000287 up to a(25000) and can report that I found no prime. - Robert G. Wilson v, Jun 23 2014
A search of every term of A000287 of form a(2^k-2) has yielded no primes up to a(2^24-2). It shouldn't have any odd terms outside this subsequence, and assuming that its terms' factors are otherwise random, it has a 2.15*10^-8 probability of containing any prime at all. After A000287, the next difficult sequence is A000373, which should contain infinitely many primes, but has none within its first 10000 terms. - Matthew House, Nov 02 2024

Crossrefs

Cf. A111198.

Extensions

a(16) = 173 inserted by Matthew House, Nov 02 2024

A210685 a(1)=-1, a(2)=2, thereafter a(n) = (1/(2n))*((7n-22)a(n-1)+2(2n-1)a(n-2)).

Original entry on oeis.org

-1, 2, -2, 2, -1, 2, 2, 8, 22, 68, 212, 678, 2207, 7298, 24458, 82928, 284066, 981884, 3421316, 12007556, 42416486, 150718772, 538421588, 1932856592, 6969847484, 25237057112, 91729488352, 334589415278, 1224445617887, 4494622119426, 16545704494682, 61071167108960, 225982053183050
Offset: 1

Views

Author

N. J. A. Sloane, Mar 28 2012

Keywords

Crossrefs

Cf. A000287.

Programs

  • Maple
    R:=proc(n) option remember; if n=1 then -1 elif n=2 then 2 else
    (1/(2*n))*((7*n-22)*R(n-1)+2*(2*n-1)*R(n-2)); fi; end;
    [seq(R(n),n=1..40)];
  • Mathematica
    a[n_] := a[n] = Which[n == 1, -1, n == 2, 2, True, (1/(2*n))*((7*n-22)*a[n-1]+2*(2*n-1)*a[n-2])]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 06 2014, after Maple *)

Formula

A000287(n) = (-1)^n*2 + a(n-1).
Showing 1-6 of 6 results.