cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A210252 Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices, 1 <= k <= n. But see A290326 for a better version.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 3, 24, 0, 0, 0, 0, 33, 188, 0, 0, 0, 0, 13, 338, 1705, 0, 0, 0, 0, 0, 252, 3580, 16980, 0, 0, 0, 0, 0, 68, 3740, 39525, 180670, 0, 0, 0, 0, 0, 0, 1938, 51300, 452865, 2020120, 0, 0, 0, 0, 0, 0, 399, 38076, 685419, 5354832, 23478426, 0, 0, 0, 0, 0, 0, 0, 15180, 646415, 9095856, 65022840, 281481880, 0, 0, 0, 0, 0, 0, 0, 2530, 373175, 10215450, 120872850, 807560625, 3461873536, 0, 0, 0, 0, 0, 0, 0, 0, 121095, 7580040, 155282400, 1614234960, 10224817515, 43494961404
Offset: 1

Views

Author

N. J. A. Sloane, Mar 19 2012

Keywords

Comments

c-nets are 3-connected rooted planar maps. This array also counts simple triangulations.
Table in Mullin & Schellenberg has incorrect values T(14,14) = 43494961412, T(15,13) = 21697730849, T(15,14) = 131631305614, T(15,15) = 556461655783. - Sean A. Irvine, Sep 28 2015
This triangle is based on a mis-reading of the Mullin-Schellenberg table. See A290326 for a better version. - N. J. A. Sloane, Jul 28 2017

Examples

			Triangle begins:
n\k
[1]  0
[2]  0 0
[3]  0 0 1
[4]  0 0 0 4
[5]  0 0 0 3 24
[6]  0 0 0 0 33 188
[7]  0 0 0 0 13 338 1705
[8]  0 0 0 0 0 252 3580 16980
[9]  0 0 0 0 0 68 3740 39525 180670
[10] 0 0 0 0 0 0 1938 51300 452865 2020120
[11] 0 0 0 0 0 0 399 38076 685419 5354832 23478426
[12] 0 0 0 0 0 0 0 15180 646415 9095856 65022840 281481880
[13] 0 0 0 0 0 0 0 2530 373175 10215450 120872850 807560625 3461873536
[14] 0 0 0 0 0 0 0 0 121095 7580040 155282400 1614234960 10224817515 43494961404
...
		

Crossrefs

Right-hand edge is A001506.
See A290326 for a better version.

Programs

  • PARI
    T(n,m) = {
      if (m <= 1+n\2 || n < 3, return(0));
      sum(k=0, m-1, sum(j=0, n-1,
         (-1)^((k+j+1)%2) * binomial(k+j,k)*(k+j+1)*(k+j+2)/2*
         (binomial(2*n, m-k-1) * binomial(2*m, n-j-1) -
          4 * binomial(2*n-1, m-k-2) * binomial(2*m-1, n-j-2))));
    };
    concat(vector(14, n, vector(n,m, T(n,m))))  \\ Gheorghe Coserea, Jan 08 2017

Formula

T(n,m) = Sum_{k=0..m-1} Sum_{j=0..n-1} (-1)^(k+j+1) * ((k+j+2)!/(2!*k!*j!)) * (binomial(2*n, m-k-1) * binomial(2*m, n-j-1) - 4 * binomial(2*n-1, m-k-2) * binomial(2*m-1, n-j-2)) if (n+2)/2 < m <= n and 0 otherwise. - Sean A. Irvine, Sep 28 2015

Extensions

a(105)=T(14,14) corrected by Sean A. Irvine, Sep 28 2015
Name changed by Gheorghe Coserea, Jul 23 2017

A000260 Number of rooted simplicial 3-polytopes with n+3 nodes; or rooted 3-connected triangulations with 2n+2 faces; or rooted 3-connected trivalent maps with 2n+2 vertices.

Original entry on oeis.org

1, 1, 3, 13, 68, 399, 2530, 16965, 118668, 857956, 6369883, 48336171, 373537388, 2931682810, 23317105140, 187606350645, 1524813969276, 12504654858828, 103367824774012, 860593023907540, 7211115497448720, 60776550501588855
Offset: 0

Views

Author

Keywords

Comments

Number of rooted loopless planar maps with n edges. E.g., there are a(2)=3 loopless planar maps with 2 edges: two rooted paths (.-.-.) and one digon (.=.). - Valery A. Liskovets, Sep 25 2003
Number of intervals (i.e., ordered pairs (x,y) such that x<=y) in the Tamari lattice (rotation lattice of binary trees) of size n (see Pallo and Chapoton references). - Ralf Stephan, May 08 2007, Jean Pallo (Jean.Pallo(AT)u-bourgogne.fr), Sep 11 2007
Number of rooted triangulations of type [n, 0] (see Brown paper eq (4.8)). - Michel Marcus, Jun 23 2013
Equivalently, number of rooted bridgeless planar maps with n edges. - Noam Zeilberger, Oct 06 2016
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
Number of uniquely sorted permutations of [2n+1] that avoid the pattern 231. Also the number of uniquely sorted permutations of [2n+1] that avoid 132. - Colin Defant, Jun 13 2019
The sequence 1,3,13,68,... appears naturally in integral geometry, namely in the algebra of unitarily invariant valuations on complex space forms. - Andreas Bernig, Feb 02 2020

Examples

			G.f. = 1 + x + 3*x^2 + 13*x^3 + 68*x^4 + 399*x^5 + 2530*x^6 + 16965*x^7 + ...
		

References

  • C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 714.
  • Handbook of Combinatorics, North-Holland '95, p. 891.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, The enumerative theory of planar maps, in A Survey of Combinatorial Theory (J. N. Srivastava et al. eds.), pp. 437-448, North-Holland, Amsterdam, 1973.

Crossrefs

Row sums of A342981.
Column 0 of A146305 and A341856; Column 2 of A255918.
Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.

Programs

  • Magma
    [Binomial(4*n+1, n+1)-9*Binomial(4*n+1, n-1): n in [0..25]]; // Vincenzo Librandi, Nov 24 2016
  • Maple
    A000260 := proc(n)
        2*(4*n+1)!/((n+1)!*(3*n+2)!) ;
    end proc:
  • Mathematica
    Table[Binomial[4n+1,n+1]-9*Binomial[4n+1,n-1],{n,0,25}] (* Harvey P. Dale, Aug 23 2011 *)
    a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 3/4, 1, 5/4}, {4/3, 5/3, 2}, 256/27 x], {x, 0, n}]; (* Michael Somos, Dec 23 2014 *)
    terms = 22; G[] = 0; Do[G[x] = 1+x*G[x]^4 + O[x]^terms, terms];
    CoefficientList[(2-G[x])*G[x]^2, x] (* Jean-François Alcover, Jan 13 2018, after Mark van Hoeij *)
  • PARI
    {a(n) = if( n<0, 0, 2 * (4*n + 1)! / ((n + 1)! * (3*n + 2)!))}; /* Michael Somos, Sep 07 2005 */
    
  • PARI
    {a(n) = binomial( 4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2))}; /* Michael Somos, Mar 28 2012 */
    
  • Sage
    def a(n):
        n = ZZ(n)
        return (4*n + 2).binomial(n + 1) // ((2*n + 1) * (3*n + 2))
    # F. Chapoton, Aug 06 2015
    

Formula

a(n) = 2*(4*n+1)! / ((n+1)!*(3*n+2)!) = binomial(4*n+1, n+1) - 9*binomial(4*n+1, n-1).
G.f.: (2-g)*g^2 where g = 1 + x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 10 2011
G.f.: hypergeom([1,1/2,3/4,5/4],[2,4/3,5/3],256*x/27) = 1 + 120*x/(Q(0)-120*x); Q(k) = 8*x*(2*k+1)*(4*k+3)*(4*k+5) + 3*(k+2)*(3*k+4)*(3*k+5) - 24*x*(k+2)*(2*k+3)*(3*k+4)*(3*k+5)*(4*k+7)*(4*k+9)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2011
a(n) = binomial(4*n + 2, n + 1) / ((2*n + 1) * (3*n + 2)). - Michael Somos, Mar 28 2012
a(n) * (n+1) = A069271(n). - Michael Somos, Mar 28 2012
0 = F(a(n), a(n+1), ..., a(n+8)) for all n in Z where a(-1) = 3/4 and F() is a polynomial of degree 2 with integer coefficients and 29 monomials. - Michael Somos, Dec 23 2014
D-finite with recurrence: 3*(3*n+2)*(3*n+1)*(n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Oct 21 2015
a(n) = Sum_{k=1..A000108(n)} k * A263191(n,k). - Alois P. Heinz, Nov 16 2015
a(n) ~ 2^(8*n+7/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n+5/2)). - Vaclav Kotesovec, Feb 26 2016
E.g.f.: 3F3(1/2,3/4,5/4; 4/3,5/3,2; 256*x/27). - Ilya Gutkovskiy, Feb 01 2017
From Gheorghe Coserea, Aug 17 2017: (Start)
G.f. y(x) satisfies:
0 = x^3*y^4 + 3*x^2*y^3 + x*(8*x+3)*y^2 - (20*x-1)*y + 16*x-1.
0 = x*(256*x - 27)*deriv(y,x) - 8*x^2*y^3 - 25*x*y^2 + 4*(24*x-11)*y + 44.
(End)
From Karol A. Penson, Apr 06 2022: (Start)
a(n) = Integral_{x=0...256/27} x^n*W(x), where
W(x) = (sqrt(2)/Pi)*(h1(x) - h2(x) + h3(x)) and
h1(x) = 3F2([-6/12,-2/12, 2/12], [ 3/12, 9/12], (27*x)/256)/((x/2)^(1/2));
h2(x) = 3F2([-3/12, 1/12, 5/12], [ 6/12, 15/12], (27*x)/256)/(x^(1/4));
h3(x) = 3F2([ 3/12, 7/12, 11/12], [18/12, 21/12], (27*x)/256)/(x^(-1/4)*32).
This integral representation is unique as the solution of n-th Hausdorff power moment of the function W. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 256/27. (End)
a(n) = (1/27^n) * Product_{1 <= i <= j <= 3*n} (3*i + j + 3)/(3*i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023

Extensions

Edited by F. Chapoton, Feb 03 2011

A100960 Triangle read by rows: T(n,k) is the number of labeled 2-connected planar graphs with n nodes and k edges, n >= 3, n <= k <= 3(n-2).

Original entry on oeis.org

1, 3, 6, 1, 12, 70, 100, 45, 10, 60, 720, 2445, 3525, 2637, 1125, 195, 360, 7560, 46830, 132951, 210861, 205905, 123795, 40950, 5712, 2520, 84000, 835800, 3915240, 10549168, 18092368, 20545920, 15337560, 7193760, 1922760, 223440, 20160, 997920, 14757120, 103692960, 423918432, 1119730032, 2014030656, 2516883516, 2181661020, 1285377660, 491282820, 109907280, 10929600
Offset: 3

Views

Author

N. J. A. Sloane, Jan 12 2005

Keywords

Examples

			The triangle T(n,k), n>=3, k>=3 begins:
  n\k [3] [4] [5] [6] [7]  [8]   [9]   [10]  [11]  [12]
  [3] 1;
  [4] 0,  3,  6,  1;
  [5] 0,  0,  12, 70, 100, 45,   10;
  [6] 0,  0,  0,  60, 720, 2445, 3525, 2637, 1125, 195;
  [7] ...
		

Crossrefs

Row sums give A096331. Main diagonal is A001710.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A100960_seq(N) = {
      my(v=Vec(A100960_ser(N+2))); vector(#v, n, Vecrev(v[n]/t^(n+2)));
    };
    concat(A100960_seq(7)) \\ Gheorghe Coserea, Aug 09 2017

Extensions

More terms from Michel Marcus, Feb 10 2016

A285165 Triangle read by rows: T(n,k) is the number of c-nets with n-k inner vertices and k outer vertices, 3 <= n, 2 <= k <= n-1.

Original entry on oeis.org

1, 1, 1, 7, 6, 1, 73, 56, 16, 1, 879, 640, 208, 30, 1, 11713, 8256, 2848, 560, 48, 1, 167423, 115456, 41216, 9440, 1240, 70, 1, 2519937, 1710592, 624384, 156592, 25864, 2408, 96, 1, 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1, 637446145, 423641088, 158883840, 44169600, 9234368, 1377600, 132480, 7008, 160, 1, 10561615871, 6966960128, 2636197888, 756712960, 169378560, 28663040, 3430528, 261648, 10920, 198, 1
Offset: 3

Views

Author

Gheorghe Coserea, Apr 12 2017

Keywords

Examples

			Triangle starts:
n\k  [2]       [3]       [4]      [5]      [6]     [7]    [8]   [9]  [10]
[3]  1;
[4]  1,        1;
[5]  7,        6,        1;
[6]  73,       56,       16,      1;
[7]  879,      640,      208,     30,      1;
[8]  11713,    8256,     2848,    560,     48,     1
[9]  167423,   115456,   41216,   9440,    1240,   70,    1;
[10] 2519937,  1710592,  624384,  156592,  25864,  2408,  96,   1;
[11] 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1;
[12] ...
		

Crossrefs

Cf. A290326.
Columns k=2-9 give: A106651(k=2), A285166(k=3), A285167(k=4), A285168(k=5), A285169(k=6), A285170(k=7), A285171(k=8), A285172(k=9).

Programs

  • PARI
    x='x; y='y;
    system("wget http://oeis.org/A106651/a106651.txt");
    Fy = read("a106651.txt");
    A106651_ser(N) = {
      my(y0 = 1 + O(x^N), y1=0, n=1);
      while(n++,
        y1 = y0 - subst(Fy, y, y0)/subst(deriv(Fy, y), y, y0);
        if (y1 == y0, break()); y0 = y1);
      y0;
    };
    z='z; t='t; u='u; c0='c0;
    r1 = 2*t*u + 2*t^2*u + 2*t*u^2 + 2*t^2*u^2;
    r2 = 4*t^2 + 4*t^3 + 4*t^2*u + 4*t^3*u;
    r3 = -4*t^2 - 4*t^3 - 2*t*u - 6*t^2*u - 4*t^3*u - 2*t*u^2 - 2*t^2*u^2;
    r4 = 2*t + 2*t^2 + 4*t^3 - u + t*u + 4*t^3*u + u^2 + t*u^2 - 2*t^2*u^2;
    r5 = -2*t - 2*t^2 - 4*t^3 - 4*t*u - 2*t^2*u - 4*t^3*u + 2*t^2*u^2;
    r6 = u + 2*t*u + 2*t^2*u - t*u^2;
    Fz = r1*z^2 + (r3*c0 + r4)*z + r2*c0^2 + r5*c0 + r6;
    seq(N) = {
      N += 10; my(z0 = 1 + O(t^N) + O(u^N), z1=0, n=1,
      Fz = subst(Fz, 'c0, subst(A106651_ser(N), 'x, 't)));
      while(n++,
        z1 = z0 - subst(Fz, z, z0)/subst(deriv(Fz, z) , z, z0);
        if (z1 == z0, break()); z0 = z1);
      vector(N-10, n, vector(n, k, polcoeff(polcoeff(z0, n-k), k-1)));
    };
    concat(seq(11))

Formula

A106651(n) = T(n,2) = Sum_{k=3..n-1} T(n,k), for n>=4.
T(n,n-2) = A054000(n-3) for n>= 5, T(n,n-3) = 8*A006325(n-3) for n>=6. - Gheorghe Coserea, Apr 19 2017

A099553 Number of rooted 2-connected loopless 4-regular planar maps with n inner faces.

Original entry on oeis.org

1, 2, 10, 42, 209, 1066, 5726, 31688, 180234, 1047356, 6198500, 37253790, 226891665, 1397880330, 8699804598, 54629525808, 345778883678, 2204263514460, 14142192816908, 91263177339092, 592069697914170, 3859674384409668, 25272938482712044
Offset: 3

Views

Author

N. J. A. Sloane, Nov 18 2004

Keywords

Comments

a(n) is also the number of rooted loopless planar maps with n-1 edges and no isthmuses. - Andrew Howroyd, Apr 01 2021
a(n) is also the number of rooted 2-connected plane quadrangulations with n+1 vertices (allowing multiple edges). - Brendan McKay, Apr 08 2025

Examples

			A(x) = x^3 + 2*x^4 + 10*x^5 + 42*x^6 + 209*x^7 + 1066*x^8 + 5726*x^9 + ...
		

Crossrefs

Row sums of A342980.

Programs

  • Maple
    A099553 := proc(n)
        local e;
        e := n-1 ;
        add(binomial(2*e-r,e-2-2*r)*2^r*binomial(2*e,r),r=0..floor(e/2-1)) ;
        %-3*add(binomial(2*e-r,e-3-2*r)*2^r*binomial(2*e,r),r=0..floor((e-3)/2)) ;
        %*2/e ;
    end proc:
    seq(A099553(n),n=3..30) ; # R. J. Mathar, Aug 28 2018
  • Mathematica
    a[n_] := Module[{e, s}, e = n-1; s = Sum[Binomial[2e-r, e-2-2r]*2^r*Binomial[2e, r], {r, 0, Floor[e/2-1]}]; s = s-3*Sum[Binomial[2e-r, e-3-2r]*2^r*Binomial[2e, r], {r, 0, Floor[(e-3)/2]}]; s=2s/e];
    Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Feb 14 2023, after R. J. Mathar *)
  • PARI
    F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z);
    G = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G,'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    seq(N) = Vec(subst(F, 'z, Z(N+3)));
    seq(23)
    \\ test: y = Ser(seq(303))*'x^3; 0 == 8*y^4 + (32*x + 12)*y^3 + (48*x^2 + 23*x + 6)*y^2 + (32*x^3 + 10*x^2 - 10*x + 1)*y + x^3*(8*x - 1)
    \\ Gheorghe Coserea, Jul 13 2018
    
  • PARI
    seq(n)={my(g=1+x*sum(n=1,n,x^n*binomial(3*n, n)*2/((n+1)*(2*n+1))) + O(x*x^n)); Vec(-1 + sqrt(serreverse(x/g^2)/x))} \\ Andrew Howroyd, Apr 06 2021

Formula

From Gheorghe Coserea, Jul 12 2018: (Start)
G.f. A(x) = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z), where z = 1 + 2*x^2 + 6*x^3 + 34*x^4 + 176*x^5 + 1004*x^6 + ... satisfies 0 = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2. (See Theorem D in reference.)
G.f. y=A(x) satisfies:
0 = 8*y^4 + (32*x + 12)*y^3 + (48*x^2 + 23*x + 6)*y^2 + (32*x^3 + 10*x^2 - 10*x + 1)*y + x^3*(8*x - 1).
0 = x^3*(2*x + 1)*(49*x - 18)*(196*x - 27)*y'''' + x^2*(96040*x^3 - 27587*x^2 - 9297*x + 972)*y''' + (72030*x^4 - 36309*x^3 + 2010*x^2 - 864*x)*y'' - 6*(8*x + 3)*(49*x + 12)*y' + (2352*x + 576)*y.
(End)
Conjecture: 3*n *(3*n-1) *(5*n-8) *(3*n-2)*a(n) -(n-2) *(2*n-3) *(355*n^2 -703*n +300)*a(n-1) -98*(n-2) *(5*n-3) *(2*n-3) *(2*n-5) *a(n-2)=0. - R. J. Mathar, Aug 28 2018
G.f.: x*(A(x) - 1) where A(x) satisfies A(x) = G(x*A(x)^2) and (G(x) + 2*x - 1)/x is the g.f. of A000139. - Andrew Howroyd, Apr 06 2021

A291841 a(n) is the number of labeled 2-connected planar graphs with n edges.

Original entry on oeis.org

1, 3, 18, 131, 1180, 12570, 154525, 2150748, 33399546, 571979428, 10699844995, 216921707622, 4734437392728, 110613829184421, 2752971531611715, 72676980383698345, 2027560176161932735, 59579981648921326791, 1838669555339295257097, 59435431024069408426431
Offset: 3

Views

Author

Gheorghe Coserea, Sep 10 2017

Keywords

Crossrefs

Column sums of A100960.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    seq(N) = {
    my(x='x+O('x^(N+3)), t='t,
       q=t*x*Ser(vector(N, n, Polrev(vector(2*n\3, k, Q(n,k)),t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)), e2=apply(serlaplace, g2));
       Vec(subst(e2, 't, 1));
    };
    seq(22)

A001506 a(n) is the number of c-nets with n+1 vertices and 2n edges, n >= 1.

Original entry on oeis.org

0, 0, 1, 4, 24, 188, 1705, 16980, 180670, 2020120, 23478426, 281481880, 3461873536, 43494961404, 556461656569, 7230987646484, 95244774132810, 1269534571172912, 17100621281619328, 232511930087682528, 3188042426888493288
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A290326.

Programs

  • PARI
    A290326(n,k) = {
      if (n < 3 || k < 3, return(0));
      sum(i=0, k-1, sum(j=0, n-1,
         (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
         (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
          4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
    };
    vector(21, n, A290326(n,n))  \\ Gheorghe Coserea, Jul 28 2017

Formula

a(n) = A290326(n,n). - Sean A. Irvine, Sep 29 2015

Extensions

Corrected and extended by Sean A. Irvine, Sep 29 2015
Name changed by Gheorghe Coserea, Jul 23 2017

A288265 Triangle read by rows: T(n,k) is the number of labeled connected planar graphs on n vertices and k edges.

Original entry on oeis.org

1, 1, 3, 1, 16, 15, 6, 1, 125, 222, 205, 120, 45, 10, 1296, 3660, 5700, 6165, 4935, 2937, 1125, 195, 16807, 68295, 156555, 258125, 330456, 334530, 254275, 131985, 40950, 5712, 262144, 1436568, 4483360, 10230360, 18528216, 27261192, 31761744, 27958920, 17666320, 7513632, 1922760, 223440, 4782969, 33779340, 136368414, 405918324, 970196283, 1910996136, 3058785990, 3866563764, 3754432899, 2724326136, 1425385584, 507370500, 109907280, 10929600
Offset: 1

Views

Author

Gheorghe Coserea, Aug 14 2017

Keywords

Comments

Row n >= 3 contains 3*n-5 terms.

Examples

			A(x;t) = x + t*x^2/2! + (3*t^2 + t^3)*x^3/3! + (16*t^3 + 15*t^4 + 6*t^5 + t^6)*x^4/4! + ...
Triangle starts:
n\k [0] [1] [2] [3] [4]  [5]   [6]   [7]   [8]   [9]   [10]  [11]  [12]
[1] 1;
[2] 0   1;
[3] 0,  0,  3,  1;
[4] 0,  0,  0,  16, 15,  6,    1;
[5] 0,  0,  0,  0,  125, 222,  205,  120,  45,   10;
[6] 0,  0,  0,  0,  0,   1296, 3660, 5700, 6165, 4935, 2937, 1125, 195;
[7] ...
		

Crossrefs

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A288265_ser(N) = {
      my(x='x+O('x^(N+3)), b = t*x^2/2 + serconvol(A100960_ser(N), exp(x)),
         g1=intformal(serreverse(x/exp(b'))/x)); serlaplace(g1);
    };
    A288265_seq(N) = {
      my(v=Vec(A288265_ser(N))); vector(#v, n, Vecrev(v[n]/t^(n-1)));
    };
    concat(A288265_seq(9))

Formula

A096332(n) = Sum_{k=n-1..3*n-6} T(n,k) for n >= 3.
A000272(n) = T(n,n-1), A007816(n-3) = T(n, 3*n-6).

A291842 a(n) is the number of labeled connected planar graphs with n edges.

Original entry on oeis.org

1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525770, 3384987698, 91976075664, 2751117418712, 89832957177685, 3179833729806525, 121286809954760876, 4959277317653328656, 216402696660205555698, 10037527922988058277877, 493159461152794975438450, 25585023231409205439510792
Offset: 1

Views

Author

Gheorghe Coserea, Sep 10 2017

Keywords

Crossrefs

Column sums of A288265.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    seq(N) = {
    my(x='x+O('x^(N+3)), t='t,
       q=t*x*Ser(vector(N, n, Polrev(vector(2*n\3, k, Q(n,k)),t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)),
       b=t*'x^2/2 + 'x*Ser(vector(N+1, n, subst(polcoeff(g2, n, 't),'x,'t))),
       g1=intformal(serreverse('x/exp(b'))/'x),
       e1='x*Ser(vector(N, n, subst(polcoeff(serlaplace(g1), n, 't), 'x, 't))));
       Vec(subst(e1,'t,1));
    };
    seq(20)

A001507 a(n) is the number of c-nets with n+1 vertices and 2n+1 edges, n >= 1.

Original entry on oeis.org

0, 0, 0, 3, 33, 338, 3580, 39525, 452865, 5354832, 65022840, 807560625, 10224817515, 131631305718, 1719292293940, 22743461653913, 304256251541865, 4111134671255120, 56049154766899216, 770325744569310630, 10664613057653024586, 148625522045319923940
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A290326.

Programs

  • PARI
    A290326(n,k) = {
      if (n < 3 || k < 3, return(0));
      sum(i=0, k-1, sum(j=0, n-1,
         (-1)^((i+j+1)%2) * binomial(i+j, i)*(i+j+1)*(i+j+2)/2*
         (binomial(2*n, k-i-1) * binomial(2*k, n-j-1) -
          4 * binomial(2*n-1, k-i-2) * binomial(2*k-1, n-j-2))));
    };
    vector(22, n, A290326(n+1,n)) \\ Gheorghe Coserea, Jul 28 2017

Formula

a(n) = A290326(n+1,n). - Sean A. Irvine, Sep 29 2015

Extensions

Corrected and extended by Sean A. Irvine, Sep 29 2015
Name changed by Gheorghe Coserea, Jul 23 2017
Showing 1-10 of 18 results. Next