cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A291842 a(n) is the number of labeled connected planar graphs with n edges.

Original entry on oeis.org

1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525770, 3384987698, 91976075664, 2751117418712, 89832957177685, 3179833729806525, 121286809954760876, 4959277317653328656, 216402696660205555698, 10037527922988058277877, 493159461152794975438450, 25585023231409205439510792
Offset: 1

Views

Author

Gheorghe Coserea, Sep 10 2017

Keywords

Crossrefs

Column sums of A288265.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    seq(N) = {
    my(x='x+O('x^(N+3)), t='t,
       q=t*x*Ser(vector(N, n, Polrev(vector(2*n\3, k, Q(n,k)),t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)),
       b=t*'x^2/2 + 'x*Ser(vector(N+1, n, subst(polcoeff(g2, n, 't),'x,'t))),
       g1=intformal(serreverse('x/exp(b'))/'x),
       e1='x*Ser(vector(N, n, subst(polcoeff(serlaplace(g1), n, 't), 'x, 't))));
       Vec(subst(e1,'t,1));
    };
    seq(20)

A322139 Number of labeled 2-connected simple graphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 0, 1, 3, 18, 131, 1180, 12570, 154535, 2151439, 33431046, 573197723, 10743619285, 218447494812, 4787255999220, 112454930390211, 2818138438707516, 75031660452368001, 2114705500316025737, 62890323682634277951, 1967901134191778583146, 64623905086814216468839
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Formula

a(n) = Sum_{i=3..n} A123534(i, n). - Andrew Howroyd, Nov 30 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018

A343869 Number of unlabeled nonseparable (or 2-connected) planar graphs with n edges.

Original entry on oeis.org

1, 0, 1, 1, 2, 4, 7, 16, 41, 108, 320, 1042, 3575, 13064, 49938, 197729, 805991, 3363084, 14302891, 61813285, 270805177, 1200460492, 5376709415, 24302430375, 110745093999, 508380790741
Offset: 1

Views

Author

Andrew Howroyd, May 04 2021

Keywords

Comments

Terms may be computed using the tools geng and planarg in nauty.

Crossrefs

Row sums of A343870.
Column sums of A049336(n > 1).
Cf. A002840 (3-connected), A010355, A021103, A046091, A289471, A291841.

Programs

  • nauty
    # count graphs for the sequence by number of vertices v, sum over v afterwards
    geng -C $v $n:$n | planarg -q | countg -q # Georg Grasegger, Jun 05 2023

Extensions

a(21)-a(26) added by Georg Grasegger, Jun 05 2023

A322140 Number of labeled 2-connected multigraphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 1, 2, 7, 37, 262, 2312, 24338, 296928, 4112957, 63692909, 1089526922, 20389411551, 414146189901, 9070116944468, 212983762029683, 5336570227705763, 142083405456873290, 4004953714929148655, 119128974685786590410, 3728639072095285867881
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

We consider a single edge to be 2-connected, so a(1) = 1.

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 1/(1 - y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018

A343871 Number of labeled 3-connected planar graphs with n edges.

Original entry on oeis.org

1, 0, 15, 70, 432, 4320, 30855, 294840, 2883240, 28175952, 310690800, 3458941920, 40459730640, 499638948480, 6324655705200, 83653192972800, 1145266802114400, 16145338385736000, 235579813593453000, 3535776409508703360, 54571687068401395200, 866268656574795936000
Offset: 6

Views

Author

Andrew Howroyd, May 05 2021

Keywords

Crossrefs

Cf. A000287, A002840 (unlabeled case), A096330, A290326, A291841, A338414.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices (see A290326)
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    a(n)={sum(k=2+(n+2)\3, 2*n\3, k!*Q(n,k))/(4*n)} \\ Andrew Howroyd, May 05 2021

Formula

a(n) = Sum_{k=2+floor((n+2)/3)..floor(2*n/3)} k!*A290326(n-k+1, k-1)/(4*n).
Showing 1-5 of 5 results.