A046091
Number of connected planar graphs with n edges.
Original entry on oeis.org
1, 1, 1, 3, 5, 12, 30, 79, 227, 709, 2318, 8049, 29372, 112000, 444855, 1833072, 7806724, 34252145, 154342391, 712231465, 3357126655, 16119421175, 78580665333
Offset: 0
a(3) = 3 since the three connected graphs with three edges are a path, a triangle and a "Y".
The first difference between this sequence and A002905 is for n=9 edges where we see K_{3,3}, the "utility graph".
A322137
Number of labeled connected graphs with n edges (the vertices are {1,2,...,k} for some k).
Original entry on oeis.org
1, 1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525780, 3384988809, 91976158434, 2751122721402, 89833276321440, 3179852538140115, 121287919647418118, 4959343701136929850, 216406753768138678671, 10037782414506891597734, 493175891246093032826160
Offset: 0
Cf.
A000664,
A002905,
A007718,
A013922,
A054923,
A057500,
A191646,
A275421,
A291842 (planar case),
A322114,
A322115.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[Subsets[Range[n+1],{2}],{n}],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,6}]
-
Connected(v)={my(u=vector(#v));for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1,k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j,2)))))} \\ Andrew Howroyd, Nov 28 2018
A322151
Number of labeled connected graphs with loops with n edges (the vertices are {1,2,...,k} for some k).
Original entry on oeis.org
1, 2, 5, 27, 216, 2311, 30988, 499919, 9431026, 203743252, 4960335470, 134382267082, 4009794148101, 130668970606412, 4617468180528235, 175867725701333896, 7182126650899080024, 313063334893103361130, 14507460736615554141354, 712192629608088061633746
Offset: 0
Cf.
A000664,
A002905,
A007718,
A013922,
A054923,
A057500,
A191646,
A291842 (planar case),
A321254,
A322114,
A322115.
-
multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[Subsets[multsubs[Range[n+1],2],{n}],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,5}]
-
Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
seq(n)={Vec(vecsum(Connected(vector(2*n, j, (1 + x + O(x*x^n))^binomial(j+1,2)))))} \\ Andrew Howroyd, Nov 28 2018
Showing 1-3 of 3 results.
Comments