cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A049334 Triangle read by rows: T(n, k) is the number of unlabeled connected planar simple graphs with n >= 1 nodes and 0<=k<=3*n-6 edges.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 1, 1, 0, 0, 0, 0, 3, 5, 5, 4, 2, 1, 0, 0, 0, 0, 0, 6, 13, 19, 22, 19, 13, 5, 2, 0, 0, 0, 0, 0, 0, 11, 33, 67, 107, 130, 130, 96, 51, 16, 5, 0, 0, 0, 0, 0, 0, 0, 23, 89, 236, 486, 804, 1112, 1211, 1026, 626, 275, 72, 14, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Planar graphs with n >= 3 nodes have at most 3*n-6 edges.

Examples

			n\k 0  1  2  3  4  5  6  7  8  9 10 11 12
--:-- -- -- -- -- -- -- -- -- -- -- -- --
1:  1
2:  0  1
3:  0  0  1  1
4:  0  0  0  2  2  1  1
5:  0  0  0  0  3  5  5  4  2  1
6:  0  0  0  0  0  6 13 19 22 19 13  5  2
		

Crossrefs

Row sums are A003094.
Column sums are A046091.

Programs

  • nauty
    geng -c $n $k:$k | planarg -q | countg -q # Georg Grasegger, Jul 11 2023

Formula

T(n, n-1) = A000055(n) and Sum_{k} T(n, k) = A003094(n) if n>=1. - Michael Somos, Aug 23 2015
log(1 + B(x, y)) = Sum{n>0} A(x^n, y^n) / n where A(x, y) = Sum_{n>0, k>=0} T(n,k) * x^n * y^k and similarly B(x, y) with A039735. - Michael Somos, Aug 23 2015

A291842 a(n) is the number of labeled connected planar graphs with n edges.

Original entry on oeis.org

1, 3, 17, 140, 1524, 20673, 336259, 6382302, 138525770, 3384987698, 91976075664, 2751117418712, 89832957177685, 3179833729806525, 121286809954760876, 4959277317653328656, 216402696660205555698, 10037527922988058277877, 493159461152794975438450, 25585023231409205439510792
Offset: 1

Views

Author

Gheorghe Coserea, Sep 10 2017

Keywords

Crossrefs

Column sums of A288265.

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    seq(N) = {
    my(x='x+O('x^(N+3)), t='t,
       q=t*x*Ser(vector(N, n, Polrev(vector(2*n\3, k, Q(n,k)),t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)),
       b=t*'x^2/2 + 'x*Ser(vector(N+1, n, subst(polcoeff(g2, n, 't),'x,'t))),
       g1=intformal(serreverse('x/exp(b'))/'x),
       e1='x*Ser(vector(N, n, subst(polcoeff(serlaplace(g1), n, 't), 'x, 't))));
       Vec(subst(e1,'t,1));
    };
    seq(20)

A288266 Triangle read by rows: T(n,k) is the number of labeled planar graphs on n vertices and k edges.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 1, 1, 6, 15, 20, 15, 6, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, 4995, 2937, 1125, 195, 1, 21, 210, 1330, 5985, 20349, 54264, 116280, 203490, 293860, 351225, 342405, 255640, 131985, 40950, 5712, 1, 28, 378, 3276, 20475, 98280, 376740, 1184040, 3108105, 6906620, 13112694, 21322812, 29332947, 32823084, 28286520, 17712016, 7513632, 1922760, 223440
Offset: 0

Views

Author

Gheorghe Coserea, Aug 14 2017

Keywords

Comments

Row n >= 3 contains 3*n-5 terms.

Examples

			A(x;t) = 1 + x + (1+t)*x^2/2! + (1+3*t+3*t^2+t^3)*x^3/3! + (1+6*t+15*t^2+20*t^3+15*t^4+6*t^5+t^6)*x^4/4! + ...
Triangle starts:
n\k [0] [1] [2]  [3]  [4]   [5]   [6]   [7]   [8]   [9]   [10]  [11]  [12]
[0] 1;
[1] 1;
[2] 1   1;
[3] 1,  3,  3,   1;
[4] 1,  6,  15,  20,  15,   6,    1;
[5] 1,  10, 45,  120, 210,  252,  210,  120,  45,   10;
[6] 1,  15, 105, 455, 1365, 3003, 5005, 6435, 6435, 4995, 2937, 1125, 195;
[7] ...
		

Crossrefs

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A288266_seq(N) = {
      my(x='x+O('x^(N+3)), b=t*x^2/2 + serconvol(A100960_ser(N), exp(x)),
         g1=intformal(serreverse(x/exp(b'))/x));
      apply(p->Vecrev(p), Vec(serlaplace(exp(g1))));
    };
    concat(A288266_seq(8))

Formula

A066537(n) = Sum_{k=0..3*n-6} T(n,k) for n >= 3.
A007816(n-3) = T(n, 3*n-6).
Showing 1-3 of 3 results.