cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A288265 Triangle read by rows: T(n,k) is the number of labeled connected planar graphs on n vertices and k edges.

Original entry on oeis.org

1, 1, 3, 1, 16, 15, 6, 1, 125, 222, 205, 120, 45, 10, 1296, 3660, 5700, 6165, 4935, 2937, 1125, 195, 16807, 68295, 156555, 258125, 330456, 334530, 254275, 131985, 40950, 5712, 262144, 1436568, 4483360, 10230360, 18528216, 27261192, 31761744, 27958920, 17666320, 7513632, 1922760, 223440, 4782969, 33779340, 136368414, 405918324, 970196283, 1910996136, 3058785990, 3866563764, 3754432899, 2724326136, 1425385584, 507370500, 109907280, 10929600
Offset: 1

Views

Author

Gheorghe Coserea, Aug 14 2017

Keywords

Comments

Row n >= 3 contains 3*n-5 terms.

Examples

			A(x;t) = x + t*x^2/2! + (3*t^2 + t^3)*x^3/3! + (16*t^3 + 15*t^4 + 6*t^5 + t^6)*x^4/4! + ...
Triangle starts:
n\k [0] [1] [2] [3] [4]  [5]   [6]   [7]   [8]   [9]   [10]  [11]  [12]
[1] 1;
[2] 0   1;
[3] 0,  0,  3,  1;
[4] 0,  0,  0,  16, 15,  6,    1;
[5] 0,  0,  0,  0,  125, 222,  205,  120,  45,   10;
[6] 0,  0,  0,  0,  0,   1296, 3660, 5700, 6165, 4935, 2937, 1125, 195;
[7] ...
		

Crossrefs

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A288265_ser(N) = {
      my(x='x+O('x^(N+3)), b = t*x^2/2 + serconvol(A100960_ser(N), exp(x)),
         g1=intformal(serreverse(x/exp(b'))/x)); serlaplace(g1);
    };
    A288265_seq(N) = {
      my(v=Vec(A288265_ser(N))); vector(#v, n, Vecrev(v[n]/t^(n-1)));
    };
    concat(A288265_seq(9))

Formula

A096332(n) = Sum_{k=n-1..3*n-6} T(n,k) for n >= 3.
A000272(n) = T(n,n-1), A007816(n-3) = T(n, 3*n-6).
Showing 1-1 of 1 results.