A210672 a(0)=1; thereafter a(n) = 2*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
1, 2, 26, 842, 50906, 4946282, 704888186, 138502957322, 35887046307866, 11855682722913962, 4863821092813045946, 2425978759725443056202, 1445750991051368583278426, 1014551931766896667943384042, 828063237870027116855857421306, 777768202388460616924079724057482
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..220
- Hacène Belbachir, Yahia Djemmada, On central Fubini-like numbers and polynomials, arXiv:1811.06734 [math.CO], 2018. See p. 4.
Programs
-
Maple
f:=proc(n,k) option remember; local i; if n=0 then 1 else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end; g:=k->[seq(f(n,k),n=0..40)]; g(2);
-
Mathematica
nmax=20; Table[(CoefficientList[Series[1/(3-2*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
Formula
a(n) ~ 2*sqrt(Pi/5) * n^(2*n+1/2) / (exp(2*n) * (log((1+sqrt(5))/2))^(2*n+1)). - Vaclav Kotesovec, Mar 13 2015
E.g.f.: 1/(3-2*cosh(x)) (even coefficients). - Vaclav Kotesovec, Mar 14 2015
a(n) = Sum_{k=0..n} A241171(n, k)*2^k. - Peter Luschny, Sep 03 2022
Comments