A210674 a(0)=1; thereafter a(n) = 3*Sum_{k=1..n} binomial(2n,2k)*a(n-k).
1, 3, 57, 2703, 239277, 34041603, 7103141697, 2043564786903, 775293596155317, 375019773885750603, 225270492555606688137, 164517775480287009524703, 143555042043378357951428157, 147502150365016885913874781203, 176273363579960990244526939543377, 242422256082395157286909073370272103
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..210
Crossrefs
Programs
-
Maple
f:=proc(n,k) option remember; local i; if n=0 then 1 else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end; g:=k->[seq(f(n,k),n=0..40)]; g(3);
-
Mathematica
nmax=20; Table[(CoefficientList[Series[1/(4-3*Cosh[x]), {x, 0, 2*nmax}], x] * Range[0, 2*nmax]!)[[2*n+1]], {n,0,nmax}] (* Vaclav Kotesovec, Mar 14 2015 *)
Formula
a(n) ~ sqrt(Pi/7) * 2^(2*n+2) * n^(2*n+1/2) / (exp(2*n) * (log((4 + sqrt(7)) / 3))^(2*n+1)). - Vaclav Kotesovec, Mar 13 2015
E.g.f.: 1/(4-3*cosh(x)) (even coefficients). - Vaclav Kotesovec, Mar 14 2015
Comments