A043297 Primes p such that B(4*p) has denominator 30 where B(2n) are the Bernoulli numbers.
2, 17, 19, 31, 47, 59, 61, 71, 101, 103, 107, 109, 137, 149, 151, 157, 167, 181, 197, 211, 223, 227, 229, 241, 257, 263, 269, 271, 283, 311, 313, 317, 331, 337, 347, 349, 353, 367, 379, 383, 389, 397, 401, 421, 439, 449, 457, 461, 463, 467, 479, 503, 521
Offset: 1
Links
- E. Pérez Herrero, Table of n, a(n) for n=1..30000
- Wikipedia, Von Staudt-Clausen theorem
Programs
-
Mathematica
Select[Prime[Range[100]], Denominator[BernoulliB[4# ]]==30&] (* T. D. Noe, Feb 19 2004 *) Select[Prime[Range[100]],!PrimeQ[4#+1]&&!PrimeQ[2#+1]||(#==2)&] (* Enrique Pérez Herrero, Aug 16 2011 *)
Comments