cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210696 Triangulations of the disk, G_{1,n}.

Original entry on oeis.org

1, 2, 5, 16, 48, 164, 559, 1952, 6872, 24520, 88006, 318444, 1158944, 4241688, 15598973, 57620596, 213680472, 795270644, 2969483214, 11121038100, 41763779054, 157235683780, 593355907790, 2243975358216, 8503404201874, 32283434698908, 122779218918272, 467713035691608
Offset: 0

Views

Author

R. J. Mathar, Mar 30 2012

Keywords

Comments

This corrects a typographical error in A005497(6).

Crossrefs

Row n=1 of A262586.

Programs

  • Maple
    BrownE := proc(r,n,m)
        local j,s,p ;
        if r < 1 then
            return 0 ;
        elif r = 1 then
            return A146305(n,m) ;
        elif r = 2 then
            j := n mod 2 ; s := floor(n/2) ;
            if type(m,'even') then
                return 0 ;
            end if;
            p := (m+1)/2 ;
            if p > 0 and s >= 0 then
                return 2*(2*p)!*(4*s+2*p+2*j-1)!/p!/(p-1)!/s!/(3*s+2*p+2*j)! ;
            else
                return 0 ;
            end if;
        elif r =3 and (n mod 3) =0 and (m mod 3) = 0 then
            s := n/3 ; p := m/3 ;
            if p >= 0 and s >= 0 then
                return (2*p+1)!*(4*s+2*p)!/p!/p!/s!/(3*s+2*p+1)! ;
            else
                return 0 ;
            end if;
        elif r >= 3 then
            if ((n-1) mod r) =0 and ((m+3) mod r) =0 then
                s := (n-1)/r ; p := (m+3)/r-1 ;
                if p>=0 and s>=0 then
                return (2*p+2)!*(4*s+2*p+1)!/p!/(p+1)!/s!/(3*s+2*p+2)! ;
                else
                    return 0 ;
                end if;
            else
                return 0 ;
            end if;
        else
            return 0 ;
        end if;
    end proc:
    BrownG := proc(n,m)
        add( numtheory[phi](s)* BrownE(s,n,m), s = numtheory[divisors](m+3) ) ;
        %/(m+3) ;
    end proc:
    A210696 := proc(n)
        BrownG(1,n) ;
    end proc:
    seq(A210696(n),n=0..25) ;
  • Mathematica
    (* See the link section. *)

Extensions

a(26) onwards from Andrew Howroyd, Nov 23 2024