cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210731 a(n) = a(n-1) + a(n-2) + n + 3 with n>1, a(0) = a(1) = 0.

Original entry on oeis.org

0, 0, 5, 11, 23, 42, 74, 126, 211, 349, 573, 936, 1524, 2476, 4017, 6511, 10547, 17078, 27646, 44746, 72415, 117185, 189625, 306836, 496488, 803352, 1299869, 2103251, 3403151, 5506434, 8909618, 14416086, 23325739, 37741861, 61067637, 98809536
Offset: 0

Views

Author

Alex Ratushnyak, May 10 2012

Keywords

Crossrefs

Cf. A033818: a(n)=a(n-1)+a(n-2)+n-5, a(0)=a(1)=0 (except first 2 terms and sign).
Cf. A002062: a(n)=a(n-1)+a(n-2)+n-4, a(0)=a(1)=0 (except the first term and sign).
Cf. A065220: a(n)=a(n-1)+a(n-2)+n-3, a(0)=a(1)=0.
Cf. A001924: a(n)=a(n-1)+a(n-2)+n-1, a(0)=a(1)=0 (except the first term).
Cf. A023548: a(n)=a(n-1)+a(n-2)+n, a(0)=a(1)=0 (except first 2 terms).
Cf. A023552: a(n)=a(n-1)+a(n-2)+n+1, a(0)=a(1)=0 (except first 2 terms).
Cf. A210730: a(n)=a(n-1)+a(n-2)+n+2, a(0)=a(1)=0.

Programs

  • GAP
    F:=Fibonacci;; List([0..40], n-> F(n+3)+4*F(n+1)-n-6); # G. C. Greubel, Jul 09 2019
  • Magma
    F:=Fibonacci; [F(n+3)+4*F(n+1)-n-6: n in [0..40]]; // G. C. Greubel, Jul 09 2019
    
  • Mathematica
    With[{F = Fibonacci}, Table[F[n+3]+4*F[n+1]-n-6, {n,0,40}]] (* G. C. Greubel, Jul 09 2019 *)
    nxt[{n_,a_,b_}]:={n+1,b,a+b+n+4}; NestList[nxt,{1,0,0},40][[;;,2]] (* or *) LinearRecurrence[{3,-2,-1,1},{0,0,5,11},40] (* Harvey P. Dale, Dec 30 2024 *)
  • PARI
    vector(40, n, n--; f=fibonacci; f(n+3)+4*f(n+1)-n-6) \\ G. C. Greubel, Jul 09 2019
    
  • Sage
    f=fibonacci; [f(n+3)+4*f(n+1)-n-6 for n in (0..40)] # G. C. Greubel, Jul 09 2019
    

Formula

From Colin Barker, Jun 29 2012: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4).
G.f.: x^2*(5-4*x)/((1-x)^2*(1-x-x^2)). (End)
a(n) = Fibonacci(n+3) + 4*Fibonacci(n+1) - (n+6). - G. C. Greubel, Jul 09 2019