cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A303875 Number of noncrossing partitions of an n-set up to rotation and reflection with all blocks having a prime number of elements.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 5, 7, 14, 26, 49, 107, 215, 502, 1112, 2619, 6220, 14807, 36396, 88397, 219920, 545196, 1364669, 3434436, 8658463, 21989434, 55893852, 142823174, 365766327, 939575265, 2420885031, 6250344302, 16183450744, 41981605437, 109155492638
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Comments

The number of such noncrossing partitions counted distinctly is given by A210737.

Crossrefs

Programs

  • PARI
    \\ number of partitions with restricted block sizes
    NCPartitionsModDihedral(v)={ my(n=#v);
    my(p=serreverse( x/(1 + sum(k=1, #v, x^k*v[k])) + O(x^2*x^n) )/x);
    my(vars=variables(p));
    my(varpow(r,d)=substvec(r + O(x^(n\d+1)), vars, apply(t->t^d, vars)));
    my(q=x*deriv(p)/p, h=varpow(p,2));
    my(R=sum(i=0, (#v-1)\2, v[2*i+1]*x*(x^2*h)^i), Q=sum(i=1, #v\2, v[2*i]*(x^2*h)^i), T=sum(k=1, #v, my(t=v[k]); if(t, x^k*t*sumdiv(k, d, eulerphi(d) * varpow(p,d)^(k/d))/k)));
    (T + 2 + intformal(sum(d=1, n, eulerphi(d)*varpow(q,d))/x) - p + (1 + Q + (1+R)^2*h/(1-Q))/2)/2 + O(x*x^n)
    }
    Vec(NCPartitionsModDihedral(vector(40,k,isprime(k))))

A210735 Number of Dyck n-paths all of whose ascents and descents have prime lengths.

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 2, 10, 10, 22, 46, 64, 167, 245, 560, 1035, 1978, 4210, 7715, 16497, 31929, 65216, 133295, 266244, 553750, 1116404, 2308931, 4738660, 9742795, 20204902, 41622910, 86539105, 179358694, 373018581, 777157221, 1618773690, 3382590684, 7065505631
Offset: 0

Views

Author

Alois P. Heinz, May 10 2012

Keywords

Examples

			a(0) = 1: the empty path.
a(1) = 0.
a(2) = 1: UUDD.
a(3) = 1: UUUDDD.
a(4) = 1: UUDDUUDD.
a(5) = 4: UUDDUUUDDD, UUUDDDUUDD, UUUDDUUDDD, UUUUUDDDDD.
a(6) = 2: UUDDUUDDUUDD, UUUDDDUUUDDD.
a(7) = 10: UUDDUUDDUUUDDD, UUDDUUUDDDUUDD, UUDDUUUDDUUDDD, UUDDUUUUUDDDDD, UUUDDDUUDDUUDD, UUUDDUUDDDUUDD, UUUDDUUDDUUDDD, UUUUUDDDDDUUDD, UUUUUDDUUDDDDD, UUUUUUUDDDDDDD.
a(8) = 10: UUDDUUDDUUDDUUDD, UUDDUUUDDDUUUDDD, UUUDDDUUDDUUUDDD, UUUDDDUUUDDDUUDD, UUUDDDUUUDDUUDDD, UUUDDDUUUUUDDDDD, UUUDDUUDDDUUUDDD, UUUDDUUUDDDUUDDD, UUUUUDDDDDUUUDDD, UUUUUDDDUUUDDDDD.
		

Crossrefs

Cf. A210737.

Programs

  • Maple
    with(numtheory):
    b:= proc(x, y, u) option remember;
          `if`(x<0 or y b(n$2, true):
    seq(a(n), n=0..40);
  • Mathematica
    b[x_, y_, u_] := b[x, y, u] = If[x<0 || yJean-François Alcover, Mar 24 2017, translated from Maple *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 2.1792514215908330337..., c = 0.4751731999905254789... . - Vaclav Kotesovec, Sep 02 2014

A303874 Number of noncrossing partitions of an n-set up to rotation with all blocks having a prime number of elements.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 5, 8, 17, 37, 71, 179, 366, 919, 2069, 5027, 12053, 29098, 71846, 175485, 437438, 1087122, 2723326, 6860525, 17301606, 43957596, 111748571, 285591775, 731432424, 1879009622, 4841510973, 12500324496, 32366232373, 83962263464, 218309244314
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Comments

The number of such noncrossing partitions counted distinctly is given by A210737.

Crossrefs

Cf. A054357 (unrestricted), A175954 (1 or 2), A210737, A295198, A303875.

Programs

  • PARI
    \\ number of partitions with restricted block sizes
    NCPartitionsModCyclic(v)={ my(n=#v);
    my(p=serreverse(x/(1 + sum(k=1, #v, x^k*v[k])) + O(x^2*x^n) )/x);
    my(vars=variables(p));
    my(varpow(r,d)=substvec(r + O(x^(n\d+1)), vars, apply(t->t^d, vars)));
    my(q=x*deriv(p)/p);
    my(T=sum(k=1, #v, my(t=v[k]); if(t, x^k*t*sumdiv(k, d, eulerphi(d) * varpow(p,d)^(k/d))/k)));
    T + 2 + intformal(sum(d=1,n,eulerphi(d)*varpow(q,d))/x) - p
    }
    Vec(NCPartitionsModCyclic(vector(40, k, isprime(k))))
Showing 1-3 of 3 results.