A210763 Tetrahedron T(j,n,k) in which the slice j is a finite triangle read by rows T(n,k) which lists the sums of the columns of the shell model of partitions with n shells.
1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 3, 1, 1, 2, 5, 1, 1, 2, 2, 2, 3, 2, 2, 3, 5, 1, 1, 1, 2, 7, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 3, 3, 4, 4, 7, 1, 1, 1, 2, 4, 11, 1, 1, 2, 2, 2, 3, 3, 3, 3, 5, 4, 4, 5, 4, 7, 3, 3, 3, 5, 6, 11, 1, 1, 1, 1, 2, 4, 15
Offset: 1
Examples
-------------------------------------------------------- Illustration of first five A210952 slices of the tetrahedron Row sum -------------------------------------------------------- . 1, 1 . 1, 1 . 1, 2, 3 . 1, 1 . 1, 2, 3 . 1, 1, 3, 5 . 1, 1 . 1, 2, 3 . 2, 2, 3, 7 . 1, 1, 2, 5, 9 . 1, 1 . 1, 2, 3 . 2, 2, 3, 7 . 2, 2, 3, 5, 12 . 1, 1, 1, 2, 7, 12 -------------------------------------------------------- . 1, 2, 2, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7, Each column sum in the slice j is equal to A000041(j). . Also this sequence can be written as a triangle read by rows in which each row is a flattened triangle. The sequence begins: 1; 1,1,2; 1,1,2,1,1,3; 1,1,2,2,2,3,1,1,2,5; 1,1,2,2,2,3,2,2,3,5,1,1,1,2,7; 1,1,2,2,2,3,3,3,3,5,3,3,4,4,7,1,1,1,2,4,11; 1,1,2,2,2,3,3,3,3,5,4,4,5,4,7,3,3,3,5,6,11,1,1,1,1,2,4,15; Row n has length A000217(n). Row sums give A066186. Right border gives A000041(n), n >= 1.