cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210772 Number of partitions of 2^n into powers of 2 less than or equal to 8.

Original entry on oeis.org

1, 2, 4, 10, 35, 165, 969, 6545, 47905, 366145, 2862209, 22632705, 180007425, 1435853825, 11470030849, 91693092865, 733276217345, 5865135816705, 46916791205889, 375317149057025, 3002468471537665, 24019472891510785, 192154683614691329, 1537233070859485185
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2012

Keywords

Examples

			a(3) = 10 because there are 10 partitions of 2^3 = 8 into powers of 2 less than or equal to 8: [1,1,1,1,1,1,1,1], [2,1,1,1,1,1,1], [2,2,1,1,1,1], [2,2,2,1,1], [2,2,2,2], [4,1,1,1,1], [4,2,1,1], [4,2,2], [4,4], [8].
		

Crossrefs

Column k=3 of A152977.

Programs

  • Maple
    a:= n-> `if`(n<2, 2^n, (Matrix(4, (i, j)-> `if`(i=j-1, 1, `if`(i=4,
         [-64, 120, -70, 15][j], 0)))^(n-2). <<4, 10, 35, 165>>)[1,1]):
    seq(a(n), n=0..30);
  • Mathematica
    LinearRecurrence[{15,-70,120,-64},{1,2,4,10,35,165},30] (* Harvey P. Dale, Aug 27 2022 *)
  • PARI
    Vec((1 - 13*x + 44*x^2 - 30*x^3 - 11*x^4 - 12*x^5) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)) + O(x^40)) \\ Colin Barker, Jan 26 2018

Formula

G.f.: -(12*x^5+11*x^4+30*x^3-44*x^2+13*x-1)/Product_{j=0..3} (2^j*x-1).
a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..2} (1-x^(2^j)) for n>0.
a(n) = 1 + (11*2^(n-3))/3 + 2^(3*n-7)/3 + 4^(n-2) for n>1. - Colin Barker, Jan 26 2018