A210772 Number of partitions of 2^n into powers of 2 less than or equal to 8.
1, 2, 4, 10, 35, 165, 969, 6545, 47905, 366145, 2862209, 22632705, 180007425, 1435853825, 11470030849, 91693092865, 733276217345, 5865135816705, 46916791205889, 375317149057025, 3002468471537665, 24019472891510785, 192154683614691329, 1537233070859485185
Offset: 0
Examples
a(3) = 10 because there are 10 partitions of 2^3 = 8 into powers of 2 less than or equal to 8: [1,1,1,1,1,1,1,1], [2,1,1,1,1,1,1], [2,2,1,1,1,1], [2,2,2,1,1], [2,2,2,2], [4,1,1,1,1], [4,2,1,1], [4,2,2], [4,4], [8].
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-70,120,-64).
Crossrefs
Column k=3 of A152977.
Programs
-
Maple
a:= n-> `if`(n<2, 2^n, (Matrix(4, (i, j)-> `if`(i=j-1, 1, `if`(i=4, [-64, 120, -70, 15][j], 0)))^(n-2). <<4, 10, 35, 165>>)[1,1]): seq(a(n), n=0..30);
-
Mathematica
LinearRecurrence[{15,-70,120,-64},{1,2,4,10,35,165},30] (* Harvey P. Dale, Aug 27 2022 *)
-
PARI
Vec((1 - 13*x + 44*x^2 - 30*x^3 - 11*x^4 - 12*x^5) / ((1 - x)*(1 - 2*x)*(1 - 4*x)*(1 - 8*x)) + O(x^40)) \\ Colin Barker, Jan 26 2018
Formula
G.f.: -(12*x^5+11*x^4+30*x^3-44*x^2+13*x-1)/Product_{j=0..3} (2^j*x-1).
a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..2} (1-x^(2^j)) for n>0.
a(n) = 1 + (11*2^(n-3))/3 + 2^(3*n-7)/3 + 4^(n-2) for n>1. - Colin Barker, Jan 26 2018