cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210775 Number of partitions of 2^n into powers of 2 less than or equal to 64.

Original entry on oeis.org

1, 2, 4, 10, 36, 202, 1828, 27337, 664665, 23693265, 1092226081, 58686573121, 3431048928385, 209706732148993, 13113096655221249, 829504773400454145, 52778852611947546625, 3367976225848670392321, 215235141069830389702657, 13764966441742878856593409
Offset: 0

Views

Author

Alois P. Heinz, Mar 26 2012

Keywords

Crossrefs

Column k=6 of A152977.

Programs

  • Maple
    a:= n-> `if`(n<7, [1, 2, 4, 10, 36, 202, 1828][n+1], (Matrix(7, (i, j)-> `if`(i=j-1, 1, `if`(i=7, [2097152, -4161536, 2731008, -755904, 94488, -5334, 127][j], 0)))^(n-6). <<1828, 27337, 664665, 23693265, 1092226081, 58686573121, 3431048928385>>)[1,1]): seq(a(n), n=0..20);

Formula

G.f.: -(7864320*x^12 -12132352*x^11 +4458752*x^10 -24624*x^9 +211146*x^8 +332009*x^7 +946454*x^6 -1548182*x^5 +587030*x^4 -84318*x^3 +5084*x^2 -125*x+1) / Product_{j=0..6} (2^j*x-1).
a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..5} (1-x^(2^j)) for n>0.