A210850 Digits of one of the two 5-adic integers sqrt(-1).
2, 1, 2, 1, 3, 4, 2, 3, 0, 3, 2, 2, 0, 4, 1, 3, 2, 4, 0, 4, 3, 4, 0, 4, 1, 2, 4, 1, 4, 1, 1, 3, 1, 4, 1, 4, 2, 0, 1, 1, 3, 3, 2, 2, 4, 0, 4, 2, 4, 0, 3, 1, 2, 4, 0, 3, 3, 0, 3, 0, 0, 0, 3, 1, 3, 1, 1, 0, 3, 0, 0, 3, 4, 1, 3, 3, 3, 4, 0, 2, 2, 0, 2, 0, 1, 0, 4, 1, 1, 4, 4, 2, 1, 0, 2, 0, 0, 3, 0, 4
Offset: 0
Examples
a(4) = 3 because 2*182*3 + 53 = 1145 == 0 (mod 5). A048898(5) = 2057 = 2*5^0 + 1*5^1 + 2*5^2 + 1*5^3 + 3*5^4. a(8) = 0, therefore A048898(9) = A048898(8) = Sum_{k=0..7} a(k)*5^k = 280182.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Peter Bala, Using Lucas polynomials to find the p-adic square roots of -1, -2 and -3, Dec 2022.
Programs
-
Maple
R:= select(t -> padic:-ratvaluep(t,1)=2,[padic:-rootp(x^2+1,5,10001)]): op([1,1,3],R); # Robert Israel, Mar 04 2016
-
Mathematica
Table[Floor[First@Select[PowerModList[-1,1/2,5^(k+1)],Mod[#,5]==2&]/5^k],{k,0,99}] (* Giorgos Kalogeropoulos, Feb 28 2023 *)
-
PARI
a(n) = truncate(sqrt(-1+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 05 2016
Formula
Extensions
Keyword "base" added by Jianing Song, Feb 17 2021
Comments