A210851 Digits of one of the two 5-adic integers sqrt(-1).
3, 3, 2, 3, 1, 0, 2, 1, 4, 1, 2, 2, 4, 0, 3, 1, 2, 0, 4, 0, 1, 0, 4, 0, 3, 2, 0, 3, 0, 3, 3, 1, 3, 0, 3, 0, 2, 4, 3, 3, 1, 1, 2, 2, 0, 4, 0, 2, 0, 4, 1, 3, 2, 0, 4, 1, 1, 4, 1, 4, 4, 4, 1, 3, 1, 3, 3, 4, 1, 4, 4, 1, 0, 3, 1, 1, 1, 0, 4, 2, 2, 4, 2, 4, 3, 4, 0, 3, 3, 0, 0, 2, 3, 4, 2, 4, 4, 1, 4, 0
Offset: 0
Examples
a(3) = 3 because 2*68*3 + 37 == 0 (mod 5). A048899(4) = 443 = 3*5^0 + 3*5^1 + 2*5^2 + 3*5^3. a(5) = 0 because A048899(6) = A048899(5) = 3*5^0 + 3*5^1 + 2*5^2 + 3*5^3 + 1*5^4 = 1068.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- Peter Bala, Using Lucas polynomials to find the p-adic square roots of -1, -2 and -3, Dec 2022.
Programs
-
Maple
R:= select(t -> padic:-ratvaluep(t,1)=3,[padic:-rootp(x^2+1,5,200)]): op([1,1,3],R); # Robert Israel, Mar 04 2016
-
Mathematica
Join[{3}, MapIndexed[#/5^#2[[1]] &, Differences[FoldList[PowerMod[#, 5, 5^#2] &, 3, Range[2, 100]]]]] (* Paolo Xausa, Jan 15 2025 *)
-
PARI
a(n) = truncate(-sqrt(-1+O(5^(n+1))))\5^n; \\ Michel Marcus, Mar 05 2016
Formula
Extensions
Keyword "base" added by Jianing Song, Feb 17 2021
Comments